Skip to main content
Log in

Two sample Bayesian acceptance sampling plan

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This article presents the optimal Bayesian acceptance sampling plan (BASP) for two sample cases. In constructing the BASP, the decision-theoretic approach is used with a specified loss function, and the Bayes decision rule is developed by minimizing the Bayes risk. Both batches of products from the production line are accepted or rejected simultaneously based on the observed sample. Such implementation has a significant advantage in reducing the cost and time by deciding on the acceptance or rejection of both the batches in a single-life testing experiment. The optimal BASP is derived under the assumption of Weibull and exponential lifetimes, although it can be extended for other lifetime distributions also. Some numerical results have been presented to show the performances of the proposed BASP. We have presented the analysis of two data sets; (i) real and (ii) simulated, mainly to show how the proposed method can be used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aslam, M. (2018). Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access, 6, 64153–64158.

    Article  Google Scholar 

  • Aslam, M., Srinivasa Rao, G., & Khan, N. (2021). Single-stage and two-stage total failure-based group-sampling plans for the Weibull distribution under neutrosophic statistics. Complex & Intelligent Systems, 7, 891–900.

    Article  Google Scholar 

  • Aslam, M., Rao, G. S., Khan, N., & Ahmad, L. (2022). Two-stage sampling plan using process loss index under neutrosophic statistics. Communications in Statistics-Simulation and Computation, 51(6), 2831–2841.

    Article  Google Scholar 

  • Chen, L. S., Liang, T., & Yang, M. C. (2023). Designing efficient Bayesian sampling plans based on the simple step-stress test under random stress-change time for censored data. Journal of Statistical Computation and Simulation, 93(7), 1104–29.

    Article  Google Scholar 

  • Chen, L. S., Liang, T., & Yang, M. C. (2022). Designing Bayesian sampling plans for simple step-stress of accelerated life test on censored data. Journal of Statistical Computation and Simulation, 92(2), 395–415.

    Article  Google Scholar 

  • Chen, L. S., Yang, M. C., & Liang, T. (2017). Curtailed Bayesian sampling plans for exponential distributions based on type-II censored samples. Journal of Statistical Computation and Simulation, 87, 1160–1178.

    Article  Google Scholar 

  • Chen, L. S., Yang, M. C., & Liang, T. (2015). Bayesian sampling plans for exponential distributions with interval censored samples. Naval Research Logistics (NRL), 62(7), 604–616.

    Article  Google Scholar 

  • Chen, J., Li, K. H., & Lam, Y. (2007). Bayesian single and double variable sampling plans for the Weibull distribution with censoring. European Journal of Operational Research, 177(2), 1062–1073.

    Article  Google Scholar 

  • Chen, J., Choy, S. B., & Li, K. H. (2004). Optimal Bayesian sampling acceptance plan with random censoring. European Journal of Operational Research, 155(3), 683–694.

    Article  Google Scholar 

  • Chen, J., Chou, W., Wu, H., & Zhou, H. (2004). Designing acceptance sampling schemes for life testing with mixed censoring. Naval Research Logistics (NRL), 51, 597–612.

    Article  Google Scholar 

  • Huang, Y. S., Hsieh, C. H., & Ho, J. W. (2008). Decisions on an optimal life test sampling plan with warranty considerations. IEEE Transactions on Reliability, 57(4), 643–649.

    Article  Google Scholar 

  • Huang, W. T., & Lin, Y. P. (2004). Bayesian sampling plans for exponential distribution based on uniform random censored data. Computational Statistics and Data Analysis, 44, 669–691.

    Article  Google Scholar 

  • Kundu, D. (2013). Bayesian analysis for partially complete time and type of failure data. Journal of Applied Statistics, 40(6), 1289–1300.

    Article  Google Scholar 

  • Kundu, D., & Pradhan, B. (2011). Bayesian analysis of progressively censored competing risks data. Sankhya B, 73(2), 276–296.

    Article  Google Scholar 

  • Lam, Y. (1990). An optimal single variable sampling plan with censoring. The Statistician, 39, 53–66.

    Article  Google Scholar 

  • Lam, Y. (1994). Bayesian variable sampling plans for the exponential distribution with type-I censoring. The Annals of Statistics, 22, 696–711.

    Google Scholar 

  • Lam, Y., & Choy, S. T. B. (1995). Bayesian variable sampling plans for the exponential distribution with uniformly distributed random censoring. Journal of Statistical Planning and Inference, 47, 277–293.

    Article  Google Scholar 

  • Liang, T., & Yang, M. C. (2013). Optimal Bayesian sampling plans for exponential distributions based on hybrid censored samples. Journal of Statistical Computation and Simulation, 83, 922–940.

    Article  Google Scholar 

  • Lin, C. T., Huang, Y., & Balakrishnan, N. (2008). Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II hybrid censored samples. Communications in Statistics Simulation and Computation, 37, 1101–1116.

    Article  Google Scholar 

  • Lin, C. T., Huang, Y., & Balakrishnan, N. (2010). Corrections on Exact Bayesian variable sampling plans for the exponential distribution based on type-I and type-II hybrid censored samples. Communications in Statistics: Simulation and Computation, 39, 1499–1505.

    Article  Google Scholar 

  • Lin, C. T., Huang, Y. L., & Balakrishnan, N. (2011). Exact Bayesian variable sampling plans for the exponential distribution with progressive hybrid censoring. Journal of Statistical Computation and Simulation, 81, 873–882.

    Article  Google Scholar 

  • Lin, Y., Liang, T., & Huang, W. (2002). Bayesian sampling plans for exponential distribution based on type-I censoring data. Annals of the Institute of Statistical Mathematics, 54, 100–113.

    Article  Google Scholar 

  • Mondal, S., Bhattacharya, R., Pradhan, B., & Kundu, D. (2020). Bayesian optimal life testing plan under the balanced two sample type-II progressive censoring scheme. Applied Stochastic Models in Business and Industry, 36(4), 628–640. https://doi.org/10.1002/asmb.2519

    Article  Google Scholar 

  • Mondal, S., & Kundu, D. (2019). A new two sample type-II progressive censoring scheme. Communications in Statistics - Theory and Methods, 48(10), 2602–2618.

    Article  Google Scholar 

  • Mondal, S., & Kundu, D. (2019). Bayesian inference for weibull distribution under the balanced joint type-II progressive censoring scheme. American Journal of Mathematical and Management Sciences, 39(1), 56–74.

    Article  Google Scholar 

  • Mondal, S., & Kundu, D. (2019). Exact inference on multiple exponential populations under a joint type-II progressive censoring scheme. Statistics, 53(6), 1329–1356.

    Article  Google Scholar 

  • Pena, E. A., & Gupta, A. K. (1990). Bayes estimation for the Marshall–Olkin exponential distribution. Journal of the Royal Statistical Society Series B, 52, 379–389.

    Google Scholar 

  • Prajapati, D., Mitra, S., & Kundu, D. (2019). A new decision theoretic sampling plan for type-I and type-I hybrid censored samples from the exponential distribution. Sankhya B, 81(2), 251–88.

    Article  Google Scholar 

  • Prajapati, D., Mitra, S., & Kundu, D. (2020). A new decision theoretic sampling plan for exponential distribution under type-I Censoring. Communications in Statistics - Simulation and Computation, 49(2), 453–71.

    Article  Google Scholar 

  • Prajapati, D., Mitra, S., & Kundu, D. (2020). Bayesian sampling plan for the exponential distribution with generalized type - II hybrid censoring scheme. Communications in Statistics - Simulation and Computation. https://doi.org/10.1080/03610918.2020.1861293

    Article  Google Scholar 

  • Prajapati, D., Mondal, S., & Kundu, D. (2021). Optimal decision-theoretic sampling plan for two exponential distributions under joint censoring scheme. Applied Stochastic Models in Business and Industry, 37, 560–576.

    Article  Google Scholar 

  • Prajapati, D., Mitra, S., Kundu, D., & Pal, A. (2023). Optimal Bayesian sampling plan for censored competing risks data. Journal of Statistical Computation and Simulation, 5, 775–99.

    Article  Google Scholar 

  • Prajapati, D., & Kundu, D. (2023). Bayesian acceptance sampling plan for simple step-stress model. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2023.2234664

    Article  Google Scholar 

  • Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate. Technometrics, 5, 375–383.

    Article  Google Scholar 

  • Srivastava, J. N. (1987). More efficient and less time-consuming censoring design for testing. Journal of Statistical Planning and Inference, 16, 389–413.

    Article  Google Scholar 

  • Tsai, T. R., Chiang, J. Y., Liang, T., & Yang, M. C. (2014). Efficient Bayesian sampling plans for exponential distributions with type-I censored samples. Journal of Statistical Computation and Simulation, 84, 964–981.

    Article  Google Scholar 

  • Yang, M. C., Chen, L. S., & Liang, T. (2017). Optimal Bayesian variable sampling plans for exponential distributions based on modified type-II hybrid censored samples. Communications in Statistics-Simulation and Computation, 46, 4722–4744.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive comments which have helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Prajapati.

Ethics declarations

Conflict of interest

Author 1 declares that he/she has no conflict of interest. Author 2 declares that he/she has no conflict of interest. Author 3 declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Calculation of \(\phi ({\textbf {W,Z}})\) in Weibull distribution

$$\begin{aligned} \phi ({\textbf {w, z}})= & {} C_1+C_2-C_1 \frac{I_{1}({\textbf {w,z}})}{I({\textbf {w,z}})}-C_2 \frac{I_{2}({\textbf {w,z}})}{I({\textbf {w,z}})} \end{aligned}$$

where

$$\begin{aligned} I({\textbf {w,z}})= & {} \int _{0}^{\infty }\int _{0}^{\infty }\int _{0}^{\infty } \alpha ^{k} \lambda ^{k_1}_1 \lambda ^{k_2}_2 \prod _{i=1}^{k}w_{i}^{\alpha -1} e^{- (\lambda _1+ \lambda _2)u(\alpha )}\pi (\lambda _1,\lambda _2)\pi (\alpha ) d \lambda _1 d \lambda _2 d \alpha \\= & {} \frac{\Gamma (a_1{+}a_2)\Gamma (a_0{+}k)\Gamma (a_1+k_1)\Gamma (a_2+k_2)b_{0}^{a_0} d^{c}}{\Gamma (a_0)\Gamma (a_1)\Gamma (a_2)\Gamma (a_1+a_2+k)\Gamma (c)}\int _{0}^{\infty } \frac{\alpha ^{k+c-1} \prod _{i=1}^{k}w_{i}^{\alpha -1}e^{-d \alpha }}{(b_0+u(\alpha ))^{a_0+k}} d\alpha ,\\{} & {} I_{1}({\textbf {w,z}}) \\{} & {} = \int _{0}^{\infty }\int _{0}^{\infty }\int _{0}^{\infty } e^{-\lambda _1 L_1^{\alpha }} \alpha ^{k} \lambda ^{k_1}_1 \lambda ^{k_2}_2 \prod _{i=1}^{k}w_{i}^{\alpha -1} e^{- (\lambda _1+ \lambda _2)u(\alpha )} \pi (\alpha ,\lambda _1,\lambda _2)d \lambda _1 d \lambda _2 d \alpha \\{} & {} = \sum _{l=0}^{\infty }\frac{(-1)^l}{l!}\int _{0}^{\infty }\int _{0}^{\infty }\int _{0}^{\infty } L_{1}^{l \alpha } \alpha ^{k} \lambda ^{k_1+l}_1 \lambda ^{k_2}_2 \\{} & {} \quad \prod _{i=1}^{k}w_{i}^{\alpha -1} e^{- (\lambda _1+ \lambda _2)u(\alpha )}\pi (\lambda _1,\lambda _2)\pi (\alpha ) d \lambda _1 d \lambda _2 d \alpha \\{} & {} = \sum _{l=0}^{\infty }\frac{(-1)^l}{l!} \frac{\Gamma (a_1+a_2)\Gamma (a_0+k+l)\Gamma (a_1+k_1+l)\Gamma (a_2+k_2)b_{0}^{a_0}d^{c}}{\Gamma (a_0)\Gamma (a_1)\Gamma (a_2)\Gamma (a_1+a_2+k+l)\Gamma (c)}\\{} & {} \quad \int _{0}^{\infty } \frac{\alpha ^{k+c-1} \prod _{i=1}^{k}w_{i}^{\alpha -1} L_{1}^{l\alpha }e^{-d \alpha }}{(b_0+u(\alpha ))^{a_0+k+l}} d\alpha . \end{aligned}$$

Similarly,

$$\begin{aligned}{} & {} I_{2}({\textbf {w,z}}) = \sum _{l=0}^{\infty }\frac{(-1)^l}{l!} \frac{\Gamma (a_1+a_2)\Gamma (a_0+k+l)\Gamma (a_1+k_1)\Gamma (a_2+k_2+l)b_{0}^{a_0}d^c}{\Gamma (a_0)\Gamma (a_1)\Gamma (a_2)\Gamma (a_1+a_2+k+l\Gamma (c))}\\{} & {} \quad \int _{0}^{\infty } \frac{\alpha ^{k+c-1} \prod _{i=1}^{k}w_{i}^{\alpha -1} L_{2}^{l\alpha }e^{-d \alpha }}{(b_0+u(\alpha ))^{a_0+k+l}} d\alpha \end{aligned}$$

Proof of Theorem 4.1

(a) For the fixed \(k_1\) and \(k_2\), let us denote \(\phi (k_1,k_2,u)=E[g(\lambda _1,\lambda _2)|k_1,k_2,u].\) The joint posterior PDF of \(\lambda _1\) and \(\lambda _2\) can be obtained as

$$\begin{aligned} \pi (\lambda _1,\lambda _2|k_1,k_2,u)=\frac{\lambda _1^{k_1} \lambda _2^{k_2}e^{-(\lambda _1+\lambda _2)u}\pi (\lambda _1,\lambda _2)}{\int _{0}^{\infty } \int _{0}^{\infty } \lambda _1^{k_1} \lambda _2^{k_2}e^{-(\lambda _1+\lambda _2)u}\pi (\lambda _1,\lambda _2) d\lambda _1 d\lambda _2}. \end{aligned}$$
(19)

Simplifying we obtain \((\lambda _1,\lambda _2)| (k_1,k_2,u) \sim BG(a_0+k,b_0+u,a_1+k_1,a_2+k_2)\) which implies that the Beta-Gamma is a conjugate prior. Therefore it is straight forward that

$$\begin{aligned} \left. \frac{\lambda _1}{\lambda _1+\lambda _2} \right| (k_1,k_2,u)\sim Beta(a_1+k_1,a_2+k_2) \ \text{ and } \ \lambda _1+\lambda _2|(k_1,k_2,u) \sim G(a_0+k,b_0+u). \end{aligned}$$

Let us define \(\displaystyle \eta =\frac{\lambda _1}{\lambda _1+\lambda _2}\) and \(\displaystyle \lambda = \lambda _1+\lambda _2 \) then by the following one-to-one transformation \(\lambda _1=\lambda \eta \) and \(\lambda _2= \lambda (1-\eta ),\) the joint posterior density function of \(\lambda _1\) and \(\lambda _2\) is

$$\begin{aligned} \pi (\lambda _1,\lambda _2|k_1,k_2,u)= \frac{1}{\lambda }\times \pi (\eta | k_1,k_2,u) \times \pi (\lambda |k_1,k_2,u) \ \ \forall \lambda _1, \lambda _2>0. \end{aligned}$$
(20)

Note that for a fixed \(k_1\) and \(k_2,\) the posterior density function of \(\eta | (k_1,k_2,u)\) is constant w.r.t. u,  and the posterior density function of \(\lambda |(k_1,k_2,u)\) is a function of u. Since the distribution function of \(\lambda |(k_1,k_2,u)\) is gamma which belongs to the exponential family, it has Monotone Likelihood Ratio (MLR) property. Then it is straightforward to show that for \(u_1 < u_2,\) the likelihood ratio \(\frac{\pi (\lambda |k_1,k_2,u_1)}{\pi (\lambda |k_1,k_2,u_2)}\) is strictly increasing in \(\lambda .\) Therefore, the posterior distribution of \(\lambda |(k_1,k_2,u)\) is stochastically decreasing function of u,  and hence due to (20) the joint posterior distribution of \((\lambda _1,\lambda _2)|(k_1,k_2,u)\) is stochastically decreasing function of u. So, if \(g(\lambda _1, \lambda _2)\) is a positive function in \(\lambda _1, \lambda _2\) and \(u_1<u_2,\) then

$$\begin{aligned} E[g(\lambda _1,\lambda _2)|k_1,k_2,u_1] > E[g(\lambda _1,\lambda _2)|k_1,k_2,u_2], \end{aligned}$$

which implies that \( \phi (k_1,k_2,u_1)> \phi (k_1,k_2,u_2). \) Hence \(\phi (k_1,k_2,u)\) is strictly decreasing in u for fixed \(k_1\) and \(k_2.\)

(b) From (a), it is straightforward that \(\delta _B\) is strictly increasing in u for fixed \(k_1\) and \(k_2.\)

Bayes risk derivation in exponential distribution

The Bayes risk is given by

$$\begin{aligned}{} & {} R_{B}^{\delta _B}(n,k,R_1,\ldots ,R_{k-1})\\{} & {} \quad = n(C_{s}-r_{s_1}-r_{s_2})+E[K_1]r_{s_1}+E[K_2]r_{s_2}+E[W_k]C_{\tau } \\{} & {} \qquad + \frac{\Gamma (a_1+a_2)}{\Gamma (a_0)\Gamma (a_2)\Gamma (a_2)}\sum _{i=0}^{4}c_{i} \frac{\Gamma (a_1+p_i)\Gamma (a_2+q_i)\Gamma (a_0+p_i+q_i)}{\Gamma (a_1+a_2+p_i+q_i)b_{0}^{p_i+q_i}} +R^{\delta _{B}}, \end{aligned}$$

where

$$\begin{aligned} R^{\delta _B}= & {} E_{\lambda _1,\lambda _2}[(C_r-c_0-c_1\lambda _1 -c_2 \lambda _2 -c_3 \lambda _1^2 -c_4 \lambda _2^2)P(U\le \xi (K_1,K_2))] \\= & {} \sum _{i=0}^{4}C_{i}E_{\lambda _1,\lambda _2}[\lambda _1^{p_i}\lambda _{2}^{q_i}P(U \le \xi (K_1,K_2))] \\= & {} \sum _{i=0}^{4}\sum _{r=0}^{k}{k \atopwithdelims ()r}\frac{C_{i}}{\Gamma (k)}E_{\lambda _1,\lambda _2}\bigg [\lambda _1^{p_i}\lambda _2^{q_i} \int _{0}^{\xi (r,k-r)}\lambda _1^{k}\lambda _2^{k-r}u^{k-1}e^{-\lambda u}du\bigg ] \\= & {} \sum _{i=0}^{4}\sum _{r=0}^{k}{k \atopwithdelims ()r}\frac{C_{i}}{\Gamma (k)} \int _{0}^{\xi (r,k-r)}E_{\lambda _1,\lambda _2}\bigg [\bigg (\frac{\lambda _1}{\lambda }\bigg )^{r+p_i}\bigg (1-\frac{\lambda _1}{\lambda }\bigg )^{k-r+q_i} \lambda ^{k+p_i+q_i}e^{-\lambda u}\bigg ] u^{k-1} du \end{aligned}$$

Since \(\displaystyle \frac{\lambda _1}{\lambda }\) and \(\lambda \) is independent we can write

$$\begin{aligned} R^{\delta _B}= & {} \sum _{i=0}^{4}\sum _{r=0}^{k}{k \atopwithdelims ()r}\frac{C_{i}}{\Gamma (k)} \int _{0}^{\xi (r,k-r)}E_{\lambda _1,\lambda _2}\bigg [\bigg (\frac{\lambda _1}{\lambda }\bigg )^{r+p_i}\bigg (1-\frac{\lambda _1}{\lambda }\bigg )^{k-r+q_i} \bigg ]\\{} & {} E_{\lambda _1,\lambda _2}\bigg [\lambda ^{k+p_i+q_i}e^{-\lambda u}\bigg ] u^{k-1} du \\= & {} \sum _{i=0}^{4}\sum _{r=0}^{k}{k \atopwithdelims ()r}\frac{C_{i}\Gamma (k+p_i+q_i+a_0)B(r+p_i+a_1, k-r+q_i+a_2)}{\Gamma (k)\Gamma (a_0)B(a_1,a_2)b_{0}^{-a_0}} \\{} & {} \int _{0}^{\xi (r,k-r)}\frac{ u^{k-1}}{(u+b_0)^{k+p_i+q_i+a_0}} du \\= & {} \sum _{i=0}^{4}\sum _{r=0}^{k}{k \atopwithdelims ()r}\frac{C_{i}\Gamma (k+p_i+q_i+a_0)B(r+p_i+a_1, k-r+q_i+a_2)}{\Gamma (k)\Gamma (a_0)B(a_1,a_2)b_{0}^{p_i+q_i}} \\{} & {} \int _{0}^{\frac{\xi (r,k-r)}{b_0}}\frac{ u^{k-1}}{(1+u)^{k+p_i+q_i+a_0}} du \\= & {} \sum _{i=0}^{4}\sum _{r=0}^{k}{k \atopwithdelims ()r}\frac{C_{i}\Gamma (p_i+q_i+a_0)B(r{+}p_i+a_1, k{-}r+q_i+a_2)}{\Gamma (a_0)B(a_1,a_2)b_{0}^{p_i+q_i}} I_{S_{r}}(k,p_i{+}q_i{+}a_0), \end{aligned}$$

where

$$\begin{aligned} \int _{0}^{\frac{\xi (r,k-r)}{b_0}}\frac{ u^{k-1}}{(1+u)^{k+p_i+q_i+a_0}} du = \int _{0}^{S_{r}}v^{k-1}(1-v)^{p_i+q_i+a_0-1} dv = B_{S_r}(k,p_i+q_i+a_0), \end{aligned}$$

\(S_{r}=\frac{\xi (r,k-r)}{b_0}\)and \(I_{S_r}(k,p_i+q_i+a_0)=\frac{B_{S_r}(k,p_i+q_i+a_0)}{B(k,p_i+q_i+a_0)},\) and \(B(a,b)=\int _{0}^{1}z^{a-1}(1-z)^{b-1}dz=\frac{\Gamma (a)\Gamma (b)}{\Gamma (a+b)}\) is the beta function, and \(B_{x}(a,b)=\int _{0}^{x}u^{a -1}(1-u)^{b-1}du, \ \text {where} \ 0\le x \le 1,\) is the incomplete beta function. We denote the cumulative distribution function of beta as, \( I_x(a, b)=\frac{B_x(a, b)}{B(a, b)}. \) Then Bayes risk is given as

$$\begin{aligned}{} & {} R_{B}^{\delta _B}(n,k,R_1,\ldots ,R_{k-1}) \\{} & {} \hspace{1.5cm} =n(C_{s}-r_{s_1}-r_{s_2})+E[K_1]r_{s_1}+E[K_2]r_{s_2}+E[W_k]C_{\tau } \\{} & {} \hspace{2cm}+ \frac{\Gamma (a_1+a_2)}{\Gamma (a_0)\Gamma (a_2)\Gamma (a_2)}\sum _{i=0}^{4}c_{i} \frac{\Gamma (a_1+p_i)\Gamma (a_2+q_i)\Gamma (a_0+p_i+q_i)}{\Gamma (a_1+a_2+p_i+q_i)b_{0}^{p_i+q_i}}\\{} & {} \hspace{2cm} + \sum _{i=0}^{4}\sum _{r=0}^{k} {k \atopwithdelims ()r}\frac{C_{i}\Gamma (p_i+q_i+a_0)B(r+p_i+a_1, k-r+q_i+a_2)}{\Gamma (a_0)B(a_0,a_1)b_0^{p_i+q_i}}\\{} & {} \quad I_{S_r}(k,p_i+q_i+a_0), \end{aligned}$$

where \(K_1(K_2)\) follows a Binomial distribution with parameters k and \(\frac{\lambda _1}{\lambda } (\frac{\lambda _2}{\lambda }),\) therefore

$$\begin{aligned} E[K_1]= & {} E_{(\lambda _1, \lambda _2)}E_{({\textbf {W,Z}})|(\lambda _1, \lambda _2)}[K_1] = E_{(\lambda _1, \lambda _2)} \Big [ k \frac{\lambda _1}{\lambda } \Big ] = k \frac{B(a_1 + 1, a_2)}{B(a_1, a_2)} \end{aligned}$$

similarly,\( \displaystyle \ E(K_2) = k \frac{B(a_1, a_2 +1)}{B(a_1, a_2)}\), and from Mondal and Kundu (2019a) for all \(i=1, \ldots , k,\) \(W_i = \sum _{s=1}^{i}V_s\), where \(V_s \sim Exp(\frac{1}{E_s})\) independently and \(E_s= \lambda (n-\sum _{j=1}^{s-1}(R_j+1)),\) using this the \(E[W_k]\) is given as

$$\begin{aligned} E[W_k]= & {} b_0 \frac{\Gamma (a_0-1)}{\Gamma (a_0)} \times \sum _{s=1}^{k} \frac{1}{(n-\sum _{j=1}^{s-1}(R_j+1)) } \quad \end{aligned}$$

Therefore, \(E(W_k)\) exists only if \(a_0>1.\)

1.1 Proof of Theorem 3.1

Let \((n_B, k_B, R_{1_B}, \ldots , R_{k_{B}-1}, \delta _B)\) be the optimal BASP, then minimum Bayes risk is given by \(R_{B}^{\delta _B}(n_B, k_B, R_{1_B}, \ldots , R_{k_{B}-1})\). Let \((0,0,0, \ldots , 0,\delta _{B}=0)\) denote the sampling plan, when we reject the batch without sampling with Bayes risk \(R_{B}^{\delta _{B}=0}(0,0, 0, \ldots , 0)= C_r\) and \((0,0, 0, \ldots , 0,\delta _{B}=1)\) denote the sampling plan when we accept the batch without sampling with Bayes risk \(R_{B}^{\delta _{B}=1}(0,0,0, \ldots , 0)= E_{\alpha , \lambda _1, \lambda _2}[g(\alpha , \lambda _1,\lambda _2)]\). Then the Bayes risk of optimal BASP is

$$\begin{aligned} R_{B}^{\delta _{B}}(n_B, k_B, R_{1_B}, \ldots , R_{k_{B}-1})\le \min \big \{E_{\alpha , \lambda _1, \lambda _2}[g(\alpha , \lambda _1,\lambda _2)],C_r\big \}. \end{aligned}$$
(21)

From (5) it is clear that

$$\begin{aligned} R_{B}^{\delta _B}(n_B, k_B, R_{1_B}, \ldots , R_{k_{B}-1})\ge n_B(C_s-r_{s_1}-r_{s_2}). \end{aligned}$$
(22)

Now from (22) and (21), it follows that

$$\begin{aligned} n_B(C_s-r_{s_1}-r_{s_2})\le \min \big \{E_{\alpha ,\lambda _1, \lambda _2}[g(\alpha , \lambda _1,\lambda _2)],C_r\big \}, \end{aligned}$$

which implies that

$$\begin{aligned} n_{B}\le \min \bigg \{\frac{E_{\alpha , \lambda _1, \lambda _2}[g(\alpha , \lambda _1,\lambda _2)]}{C_s-r_{s_1}-r_{s_2}},\frac{C_{r}}{C_s-r_{s_1}-r_{s_2}}\bigg \}, \end{aligned}$$

and \(0\le k_{B}\le n_{B}.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, D., Mondal, S. & Kundu, D. Two sample Bayesian acceptance sampling plan. Ann Oper Res (2024). https://doi.org/10.1007/s10479-023-05804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05804-6

Keywords

Navigation