Skip to main content
Log in

The effects of cap-and-trade regulation and sales effort on supply chain coordination

  • S.I.: OR for Sustainability in Supply Chain Management
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Under cap-and-trade regulation, this paper firstly investigates the optimal production decisions and sales effort level with the cost-sharing and quantity-discount contracts. And we further explore the effects of the regulation and sales effort on supply chain coordination. We list some main conclusions here. First, with the two contracts, the manufacturer’s optimal profit firstly increases and then decreases as the cap increases. Both the manufacturer’s and retailer’s optimal profits are increasing in the marginal sales effort cost in some cases. Second, the two contracts partly coordinate the supply chain, and the quantity-discount contract is more flexible in coordinating the supply chain, which means that the condition of supply chain coordination through the quantity-discount contract is easier to meet. Third, for the two contracts, higher carbon trading price and stricter cap are beneficial to supply chain coordination, while the retailer’s sales effort damages supply chain coordination. Finally, we extend our model to consider production and retail competition to check the robustness of the coordination results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://news.163.com/15/1023/06/B6JF2F9200014AED.html.

  2. http://www.zgdqsc.roboo.com/web/461008/388531.htm.

  3. https://www.docin.com/p-49023488.html.

  4. http://www.tanjiaoyi.com/article-22333-1.html.

  5. http://www.ehangwang.cn/article/detail/post-12630.html.

  6. https://baijiahao.baidu.com/s?id=1740103531247323118&wfr=spider&for=pc.

References

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44.

    Article  Google Scholar 

  • Cai, G. G., Zhang, Z. G., & Zhang, M. (2009). Game theoretical perspectives on dual-channel supply chain competition with price discounts and pricing schemes. International Journal of Production Economics, 117(1), 80–96.

    Article  Google Scholar 

  • Cao, K., Xu, X., Wu, Q., & Zhang, Q. (2017). Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. Journal of Cleaner Production, 167, 505–513.

    Article  Google Scholar 

  • Carrillo, J. E., Vakharia, A. J., & Wang, R. (2014). Environmental implications for online retailing. European Journal of Operational Research, 239(3), 744–755.

    Article  Google Scholar 

  • Chen, J., Zhang, H., & Sun, Y. (2012). Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain. Omega, 40(5), 571–583.

    Article  Google Scholar 

  • Chen, X., Wang, X., & Chan, H. K. (2017). Manufacturer and retailer coordination for environmental and economic competitiveness: A power perspective. Transportation Research Part E: Logistics Transportation Review, 97, 268–281.

    Article  Google Scholar 

  • Dong, C., Shen, B., Chow, P. S., Yang, L., & Chi, T. N. (2016). Sustainability investment under cap-and-trade regulation. Annals of Operations Research, 240(2), 509–531.

    Article  Google Scholar 

  • Du, S., Zhu, Y., Zhu, Y., & Tang, W. (2020). Allocation policy considering firm's time-varying emission reduction in a cap-and-trade system. Annals of Operations Research290.

  • Du, S., Zhu, L., Liang, L., & Ma, F. (2013). Emission-dependent supply chain and environment-policy-making in the ‘cap-and-trade’system. Energy Policy, 57, 61–67.

    Article  Google Scholar 

  • Gong, X., & Zhou, S. X. (2013). Optimal production planning with emissions trading. Operations Research, 61(4), 908–924.

    Article  Google Scholar 

  • Govindan, K., & Malomfalean, A. (2019). A framework for evaluation of supply chain coordination by contracts under O2O environment. International Journal of Production Economics, 215, 11–23.

    Article  Google Scholar 

  • Govindan, K., Popiuc, M. N., & Diabat, A. (2013). Overview of coordination contracts within forward and reverse supply chains. Journal of Cleaner Production, 47, 319–334.

    Article  Google Scholar 

  • He, P., Zhang, W., Xu, X., & Bian, Y. (2015). Production lot-sizing and carbon emissions under cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 103, 241–248.

    Article  Google Scholar 

  • Heese, H. S. (2007). Inventory record inaccuracy, double marginalization, and RFID adoption. Production Operations Management, 16(5), 542–553.

    Article  Google Scholar 

  • Heydari, J., & Asl, Najafi.J. (2018). A revised sales rebate contract with effort-dependent demand: A channel coordination approach. International Transactions in Operational Research.

  • Ingene, C. A., & Parry, M. E. (1995). A note on multi-regional marketing. Management Science, 41(7), 1194–1201.

    Article  Google Scholar 

  • Jabbour, C. J. C., Neto, A. S., Gobbo, J. A., Ribeiro, M. D., & Jabbour, A. B. L. D. (2015). Eco-innovations in more sustainable supply chains for a low-carbon economy: A multiple case study of human critical success factors in Brazilian leading companies. International Journal of Production Economics, 164, 245–257.

    Article  Google Scholar 

  • Jaber, M. Y., Glock, C. H., & El Saadany, A. M. A. (2013). Supply chain coordination with emissions reduction incentives. International Journal of Production Research, 51(1), 69–82.

    Article  Google Scholar 

  • Ji, J., Zhang, Z., & Yang, L. (2017). Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation. International Journal of Production Economics., 187, 68–84.

    Article  Google Scholar 

  • Ji, T., Xu, X., Yan, X., & Yu, Y. (2020). The production decisions and cap setting with wholesale price and revenue sharing contracts under cap-and-trade regulation. International Journal of Production Research, 58(1), 128–147.

    Article  Google Scholar 

  • Krishnan, H., Kapuscinski, R., & Butz, D. A. (2004). Coordinating contracts for decentralized supply chains with retailer promotional effort. Management Science, 50(1), 48–63.

    Article  Google Scholar 

  • Lai, Z., Lou, G., Zhang, T., & Fan, T. (2021). Financing and coordination strategies for a manufacturer with limited operating and green innovation capital: Bank credit financing versus supplier green investment. Annals of Operations Research, pp. 1–35.

  • Leng, M., & Parlar, M. (2010). Game-theoretic analyses of decentralized assembly supply chains: Non-cooperative equilibria vs. Coordination with cost-sharing contracts. European Journal of Operational Research, 204(1), 96–104.

    Article  Google Scholar 

  • Li, X., Li, Y., & Cai, X. (2013). Double marginalization and coordination in the supply chain with uncertain supply. European Journal of Operational Research., 226(2), 228–236.

    Article  Google Scholar 

  • Liang, Y., Zuo, X., & Lei, H. (2011). Research on supply chain coordination of TPL supplier participation. Journal of Service Science Management, 4(1), 1–7.

    Article  Google Scholar 

  • Mondal, C., & Giri, B. C. (2020). Retailers’ competition and cooperation in a closed-loop green supply chain under governmental intervention and cap-and-trade policy. Operational Research, 22(2), 859–894.

    Article  Google Scholar 

  • Ogier, M., Cung, V. D., Boissière, J., & Chung, S. H. (2013). Decentralised planning coordination with quantity discount contract in a divergent supply chain. International Journal of Production Research, 51(9), 2776–2789.

    Article  Google Scholar 

  • Qian, X., Chan, F. T., Zhang, J., Yin, M., & Zhang, Q. (2020). Channel coordination of a two-echelon sustainable supply chain with a fair-minded retailer under cap-and-trade regulation. Journal of Cleaner Production, 244, 118715.

    Article  Google Scholar 

  • Tan, X., & Wang, X. (2017). The market performance of carbon trading in China: A theoretical framework of structure-conduct-performance. Journal of Cleaner Production, 159, 410–424.

    Article  Google Scholar 

  • Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management Science, 48(8), 992–1007.

    Article  Google Scholar 

  • Tian, L., Vakharia, A. J., Tan, Y. R., & Xu, Y. (2018). Marketplace, reseller, or hybrid: Strategic analysis of an emerging E-Commerce model. Production and Operations Management, 27(8), 1595–1610.

    Article  Google Scholar 

  • Toptal, A., & Çetinkaya, B. (2017). How supply chain coordination affects the environment: A carbon footprint perspective. Annals of Operations Research, 250(2), 487–519.

    Article  Google Scholar 

  • Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing Service Operations Management, 2(4), 372–391.

    Article  Google Scholar 

  • Wang, N., Fang, X., Gou, Q., & Liang, L. (2017). Supply chain performance under pull or push contracts in the presence of a market disruption. International Transactions in Operational Research, 24(4), 713–736.

    Article  Google Scholar 

  • Xing, D., & Liu, T. (2012). Sales effort free riding and coordination with price match and channel rebate. European Journal of Operational Research, 219(2), 264–271.

    Article  Google Scholar 

  • Xu, X., Chen, Y., He, P., Yu, Y., & Bi, G. (2021). The selection of marketplace mode and reselling mode with demand disruptions under cap-and-trade regulation. International Journal of Production Research, pp. 1–20.

  • Xu, J., Chen, Y., & Bai, Q. (2016a). A two-echelon sustainable supply chain coordination under cap-and-trade regulation. Journal of Cleaner Production, 135, 42–56.

    Article  Google Scholar 

  • Xu, X., He, P., Xu, H., & Zhang, Q. (2017a). Supply chain coordination with green technology under cap-and-trade regulation. International Journal of Production Economics, 183, 433–442.

    Article  Google Scholar 

  • Xu, X., Xu, X., & He, P. (2016b). Joint production and pricing decisions for multiple products with cap-and-trade and carbon tax regulations. Journal of Cleaner Production, 112, 4093–4106.

    Article  Google Scholar 

  • Xu, X., Zhang, W., He, P., & Xu, X. (2017b). Production and pricing problems in make-to-order supply chain with cap-and-trade regulation. Omega, 66, 248–257.

    Article  Google Scholar 

  • Zanoni, S., Mazzoldi, L., & Jaber, M. Y. (2014). Vendor-managed inventory with consignment stock agreement for single vendor-single buyer under the emission-trading scheme. International Journal of Production Research, 52(1), 20–31.

    Article  Google Scholar 

  • Zapletal, F., & Šmíd, M. (2016). Mean-risk optimal decision of a steel company under emission control. Central European Journal of Operations Research, 24(2), 435–454.

    Article  Google Scholar 

  • Zhang, B., & Xu, L. (2013). Multi-item production planning with carbon cap and trade mechanism. International Journal of Production Economics, 144(1), 118–127.

    Article  Google Scholar 

  • Zhang, N., & Zhang, W. (2020). Can sustainable operations achieve economic benefit and energy saving for manufacturing industries in china? Annals of Operations Research. https://doi.org/10.1007/s10479-018-2955-3

    Article  Google Scholar 

  • Zhang, P., Xiong, Y., & Xiong, Z. (2015). Coordination of a dual-channel supply chain after demand or production cost disruptions. International Journal of Production Research, 53(10), 3141–3160.

    Article  Google Scholar 

  • Zhen, L., Huang, L., & Wang, W. (2019). Green and sustainable closed-loop supply chain network design under uncertainty. Journal of Cleaner Production, 227, 1195–1209.

    Article  Google Scholar 

  • Zhou, Y., Guo, J., & Zhou, W. (2018). Pricing/service strategies for a dual-channel supply chain with free riding and service-cost sharing. International Journal of Production Economics, 196, 198–210.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [Nos. 72171001 and 71801211]; Excellent Youth Research Project of Universities in Anhui Province [2022AH030005]; the Project of Leading Talent of Anhui Province [No. S020218015], and the Key Project of Education Department of Anhui Province [No. SK2020A0041]; the China’s Post-doctoral Science Fundation [Nos. 2018M632556 and 2019T120548].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

From Eqs. (1) and (2), we know that \(\Pi_{R}^{\psi } = (a - q + \theta s - w)q - {{(1 - \psi )ms^{2} } \mathord{\left/ {\vphantom {{(1 - \psi )ms^{2} } 2}} \right. \kern-0pt} 2}.\) Then we let the first partial derivatives of \(\Pi_{R}^{\psi }\) with respect to \(q\) and \(s\) be equal to zero. That is, \({{\partial \Pi_{R}^{\psi } } \mathord{\left/ {\vphantom {{\partial \Pi_{R}^{\psi } } {\partial q}}} \right. \kern-0pt} {\partial q}} = a + \theta s - w - 2q = 0\) and \({{\partial \Pi_{R}^{\psi } } \mathord{\left/ {\vphantom {{\partial \Pi_{R}^{\psi } } {\partial s}}} \right. \kern-0pt} {\partial s}} = \theta q - (1 - \psi )ms = 0.\) And the Hessian matrix of \(\Pi_{R}^{\psi }\) is as follows:

$$ H_{1} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \Pi_{R}^{\psi } }}{{\partial q^{2} }}} & {\frac{{\partial^{2} \Pi_{R}^{\psi } }}{\partial q\partial s}} \\ {\frac{{\partial^{2} \Pi_{R}^{\psi } }}{\partial s\partial q}} & {\frac{{\partial^{2} \Pi_{R}^{\psi } }}{{\partial s^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 2} & \theta \\ \theta & { - (1 - \psi )m} \\ \end{array} } \right). $$

According to the assumption \(2(1 - \psi )m > \theta^{2} ,\) the matrix \(H_{1}\) is negative definite, then the optimal decisions from the first order conditions are as follows:

$$ q^{ * } = {{(1 - \psi )m(a - w)} \mathord{\left/ {\vphantom {{(1 - \psi )m(a - w)} {[2(1 - \psi )m - \theta^{2} }}} \right. \kern-0pt} {[2(1 - \psi )m - \theta^{2} }}],s^{ * } = {{(a - w)\theta } \mathord{\left/ {\vphantom {{(a - w)\theta } {[2(1 - \psi )m - \theta^{2} ]}}} \right. \kern-0pt} {[2(1 - \psi )m - \theta^{2} ]}}. $$

Then, we can derive that \(p^{ * } = a - q^{ * } + \theta s^{ * } = {{[m(a + w) - \theta^{2} w]} \mathord{\left/ {\vphantom {{[m(a + w) - \theta^{2} w]} {[2(1 - \psi )m - \theta^{2} ]}}} \right. \kern-0pt} {[2(1 - \psi )m - \theta^{2} ]}}.\) According to Eq. (3), the manufacturer’s profit can be rewritten as follows:

\(\Pi_{M}^{\psi } = \frac{(1 - \psi )m(a - w)(w - c - be)}{{[2(1 - \psi )m - \theta^{2} ]}} - \frac{{\psi m(a - w)^{2} \theta^{2} }}{{2[2(1 - \psi )m - \theta^{2} ]^{2} }} + bC.\) We let the first partial derivatives of \(\Pi_{M}^{\psi }\) with respect to \(w\) be equal to zero. That is \(\frac{{\partial \Pi_{M}^{\psi } }}{\partial w} = \frac{(1 - \psi )(a + c + be - 2w)m}{{[2(1 - \psi )m - \theta^{2} ]}} + \frac{{\psi m(a - w)\theta^{2} }}{{[2(1 - \psi )m - \theta^{2} ]^{2} }} = 0.\) Since \(\frac{{\partial^{2} \Pi_{M}^{\psi } }}{{\partial w^{2} }} = - \frac{2(1 - \psi )m}{{[2(1 - \psi )m - \theta^{2} ]}} - \frac{{\psi m\theta^{2} }}{{[2(1 - \psi )m - \theta^{2} ]^{2} }} < 0,\) \(\Pi_{M}^{\psi }\) is a concave function of \(w.\) Thus, we can derive that \(w^{\psi * } = {{\{ (1 - \psi )[2(1 - \psi )m - \theta^{2} ](a + c + be)m + \psi ma\theta^{2} \} } \mathord{\left/ {\vphantom {{\{ (1 - \psi )[2(1 - \psi )m - \theta^{2} ](a + c + be)m + \psi ma\theta^{2} \} } {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}.\) Therefore, we have the following solution group:

\(q^{\psi * } = {{m(1 - \psi )^{2} (a - c - be)} \mathord{\left/ {\vphantom {{m(1 - \psi )^{2} (a - c - be)} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }},\) \(p^{\psi * } = \frac{{(1 - \psi )^{2} (3a + c + be)m + [\psi (2a + c + be) - (a + c + be)]\theta^{2} }}{{2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} }},\) \(\Pi_{R}^{\psi * } = {{m(a - c - be)^{2} (1 - \psi )^{3} [2(1 - \psi )m - \theta^{2} ]} \mathord{\left/ {\vphantom {{m(a - c - be)^{2} (1 - \psi )^{3} [2(1 - \psi )m - \theta^{2} ]} {\{ 2\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \}^{2} }}} \right. \kern-0pt} {\{ 2\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \}^{2} }}\} ,\) \(\Pi_{M}^{\psi * } = {{m(a - c - be)^{2} (1 - \psi )^{2} } \mathord{\left/ {\vphantom {{m(a - c - be)^{2} (1 - \psi )^{2} } {\{ 4(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + 2\psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 4(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + 2\psi \theta^{2} \} }} + bC.\)

Then, the manufacturer’s total carbon emission is \(eq^{\psi * } = {{em(1 - \psi )^{2} (a - c - be)} \mathord{\left/ {\vphantom {{em(1 - \psi )^{2} (a - c - be)} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}.\) However, whether the value of \(eq^{\psi * }\) is higher than the cap is not deterministic. If \(eq^{\psi * } > C,\) the above results are true. If \(eq^{\psi * } \le C,\) according to our assumption that \(eq^{\psi * } \ge C,\) then, \(eq^{\psi * } = C.\) It means that the manufacturer gets too many credits. Hence, he needs to use all the credits to make production. Under this circumstance, \(q^{\psi * } = {C \mathord{\left/ {\vphantom {C e}} \right. \kern-0pt} e},\) we plug this value into the retailer’s response function and derive that \(s^{\psi * } = {{\theta C} \mathord{\left/ {\vphantom {{\theta C} {[(1 - \psi )me]}}} \right. \kern-0pt} {[(1 - \psi )me]}},\) \(w^{w * } = {{\{ (1 - \psi )ame - [2(1 - \psi )m - \theta^{2} ]C\} } \mathord{\left/ {\vphantom {{\{ (1 - \psi )ame - [2(1 - \psi )m - \theta^{2} ]C\} } {[(1 - \psi )me]}}} \right. \kern-0pt} {[(1 - \psi )me]}}.\) The firms’ optimal profits are \(\Pi_{R}^{\psi * } = {{[2(1 - \psi )m - \theta^{2} ]C^{2} } \mathord{\left/ {\vphantom {{[2(1 - \psi )m - \theta^{2} ]C^{2} } {[2(1 - \psi )me^{2} ]}}} \right. \kern-0pt} {[2(1 - \psi )me^{2} ]}}\) and \(\Pi_{M}^{\psi * } = {{\{ (1 - \psi )(a - c)meC - [2(1 - \psi )m - \theta^{2} ]C^{2} \} } \mathord{\left/ {\vphantom {{\{ (1 - \psi )(a - c)meC - [2(1 - \psi )m - \theta^{2} ]C^{2} \} } {[(1 - \psi )me^{2} ]}}} \right. \kern-0pt} {[(1 - \psi )me^{2} ]}} - {{\psi \theta^{2} C^{2} } \mathord{\left/ {\vphantom {{\psi \theta^{2} C^{2} } {[2(1 - \psi )^{2} me^{2} ]}}} \right. \kern-0pt} {[2(1 - \psi )^{2} me^{2} ]}},\) respectively.

Summarizing the above analysis, we can get Theorem 1.

Proof of Proposition 1

From Theorem 1, we get that, if \(0 < C < C_{1} ,\) \(p^{\psi * } = \frac{{(1 - \psi )^{2} (3a + c + be)m + [\psi (2a + c + be) - (a + c + be)]\theta^{2} }}{{2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} }},\) and if \(C \ge C_{1} ,\) \(p^{\psi * } = {{\{ (1 - \psi )ame - [(1 - \psi )m - \theta^{2} ]C\} } \mathord{\left/ {\vphantom {{\{ (1 - \psi )ame - [(1 - \psi )m - \theta^{2} ]C\} } {[(1 - \psi )me]}}} \right. \kern-0pt} {[(1 - \psi )me]}}.\) We can have that \({{\partial p^{\psi * } } \mathord{\left/ {\vphantom {{\partial p^{\psi * } } {\partial b}}} \right. \kern-0pt} {\partial b}} = {{[(1 - \psi )m - \theta^{2} ]} \mathord{\left/ {\vphantom {{[(1 - \psi )m - \theta^{2} ]} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} }}\) if \(0 < C < C_{1} ,\) and if \(C \ge C_{1} ,\) the optimal retail price is not relevant to carbon trading price. From Assumption 1, we know \(m > {{\theta^{2} } \mathord{\left/ {\vphantom {{\theta^{2} } {[2(1 - \psi )]}}} \right. \kern-0pt} {[2(1 - \psi )]}}.\) Hence, we derive that \({{\partial p^{\psi * } } \mathord{\left/ {\vphantom {{\partial p^{\psi * } } \partial }} \right. \kern-0pt} \partial }b < 0\) when \({{\theta^{2} } \mathord{\left/ {\vphantom {{\theta^{2} } {[2(1 - \psi )] < }}} \right. \kern-0pt} {[2(1 - \psi )] < }}m \le {{\theta^{2} } \mathord{\left/ {\vphantom {{\theta^{2} } {(1 - \psi )}}} \right. \kern-0pt} {(1 - \psi )}};\) \({{\partial p^{\psi * } } \mathord{\left/ {\vphantom {{\partial p^{\psi * } } \partial }} \right. \kern-0pt} \partial }b > 0\) when \(m > {{\theta^{2} } \mathord{\left/ {\vphantom {{\theta^{2} } {(1 - \psi )}}} \right. \kern-0pt} {(1 - \psi )}}.\)

Proof of Theorem 2

Following a similar process in proving Theorem 1, we can get Theorem 2.

Proof of Proposition 2

Following a similar process in proving Proposition 1, we can get Proposition 2.

Proof of Proposition 3

After comparing the optimal production quantity and manufacturer’s optimal profit in Theorem 1 with those in the Theorem 2, we can derive that \(q^{\psi * } - q^{\varphi * } = (a - c - be)m\left\{ {\frac{{(1 - \psi )^{2} }}{{2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} }} - \frac{1}{{2[(2 - \delta )m - \theta^{2} ]}}} \right\},\) and \(\Pi_{M}^{\psi * } - \Pi_{M}^{\varphi * } = \frac{{(a - c - be)^{2} m}}{2}\left\{ {\frac{{(1 - \psi )^{2} }}{{2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} }} - \frac{1}{{2[(2 - \delta )m - \theta^{2} ]}}} \right\}.\) Thus, we only need to estimate the relationship between \(\frac{{(1 - \psi )^{2} }}{{2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} }} - \frac{1}{{2[(2 - \delta )m - \theta^{2} ]}}\) and zero. \(\frac{{(1 - \psi )^{2} }}{{2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} }} - \frac{1}{{2[(2 - \delta )m - \theta^{2} ]}} = \frac{{ - 2\delta (1 - \psi )^{2} m + \psi (1 - 2\psi )\theta^{2} }}{{\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \} \{ 2[(2 - \delta )m - \theta^{2} ]\} }}.\) Hence, we can derive that if \({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2} \le \psi < 1,\) \(q^{\psi * } - q^{\varphi * } < 0\) and \(\Pi_{M}^{\psi * } - \Pi_{M}^{\varphi * } < 0.\) If \(0 < \psi < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2},\) then \(q^{\psi * } - q^{\varphi * } > 0\) and \(\Pi_{M}^{\psi * } - \Pi_{M}^{\varphi * } > 0\) when \(0 < \delta < {{\psi (1 - 2\psi )\theta^{2} } \mathord{\left/ {\vphantom {{\psi (1 - 2\psi )\theta^{2} } {[2m(1 - \psi )^{2} ]}}} \right. \kern-0pt} {[2m(1 - \psi )^{2} ]}}.\) Otherwise, \(q^{\psi * } - q^{\varphi * } \le 0\) and \(\Pi_{M}^{\psi * } - \Pi_{M}^{\varphi * } \le 0.\) In conclusion, if \(\delta \in (0,{\text{max\{ }}0,{{\psi (1 - 2\psi )\theta^{2} } \mathord{\left/ {\vphantom {{\psi (1 - 2\psi )\theta^{2} } {[2m(1 - \psi )^{2} ]}}} \right. \kern-0pt} {[2m(1 - \psi )^{2} ]}}{\text{\} }}],\) \(q^{\psi * } \ge q^{\varphi * }\) and \(\Pi_{M}^{\psi * } \ge \Pi_{M}^{\varphi * } .\) Otherwise, \(q^{\psi * } < q^{\varphi * }\) and \(\Pi_{M}^{\psi * } < \Pi_{M}^{\varphi * } .\)

Proof of Theorem 3

In the centralized supply chain, following the similar process in proving Theorems 1 and 2, we can get the results shown in Theorem 3.

Proof of Theorem 4

We use a contract \((w^{c\psi * } ,s^{c\psi * } )\) to explore the supply chain coordination, where \(s^{ * } = {{(a - c - be)\theta } \mathord{\left/ {\vphantom {{(a - c - be)\theta } {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}\) when \(0 < C < C_{3}\) and \(s^{ * } = {{\theta C} \mathord{\left/ {\vphantom {{\theta C} {(me)}}} \right. \kern-0pt} {(me)}}\) when \(C \ge C_{3} .\) If the contract \((w^{c\psi * } ,s^{c\psi * } )\) can facilitate the retailer to order \(q^{ * }\) presented in Theorem 3, then the contract coordinates the supply chain. That is, \(q^{ * } = {{m(a - c - be)} \mathord{\left/ {\vphantom {{m(a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}\) when \(0 < C < C_{3} ;\) \(q^{ * } = {C \mathord{\left/ {\vphantom {C e}} \right. \kern-0pt} e}\) when \(C \ge C_{3} ,\) where \(C_{3} = {{me(a - c - be)} \mathord{\left/ {\vphantom {{me(a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}.\) In a decentralized supply chain, for the given wholesale price, \(\Pi_{R}^{\psi } = (p - w)q - {{(1 - \psi )ms^{ * 2} } \mathord{\left/ {\vphantom {{(1 - \psi )ms^{ * 2} } 2}} \right. \kern-0pt} 2} = (a - q + \theta s^{ * } - w)q - (1 - \psi ){{ms^{ * 2} } \mathord{\left/ {\vphantom {{ms^{ * 2} } 2}} \right. \kern-0pt} 2},\) it is a concave function of \(q,\) Then, we can find that \(q^{\psi } = {{(a + \theta s^{ * } - w)} \mathord{\left/ {\vphantom {{(a + \theta s^{ * } - w)} 2}} \right. \kern-0pt} 2}.\) In order to let \(q^{\psi } = q^{ * } ,\) we derive that \(w^{c\psi * } = c + be\) when \(0 < C < C_{3} ;\) \(w^{c\psi * } = {{[ame - (2m - \theta^{2} )C]} \mathord{\left/ {\vphantom {{[ame - (2m - \theta^{2} )C]} {(me)}}} \right. \kern-0pt} {(me)}}\) when \(C \ge C_{3} .\) Thus, the optimal profits of the two firms are \(\Pi_{R}^{c\psi * } = {{m(a - c - be)^{2} [2m - (1 - \psi )\theta^{2} ]} \mathord{\left/ {\vphantom {{m(a - c - be)^{2} [2m - (1 - \psi )\theta^{2} ]} {[2(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(2m - \theta^{2} )^{2} ]}}\) and \(\Pi_{M}^{c\psi * } = bC - {{\psi m(a - c - be)^{2} \theta^{2} } \mathord{\left/ {\vphantom {{\psi m(a - c - be)^{2} \theta^{2} } {[2(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(2m - \theta^{2} )^{2} ]}}\) when \(0 < C < C_{3} ;\) \(\Pi_{R}^{c\psi * } = {{[2m - (1 - \psi )\theta^{2} ]C^{2} } \mathord{\left/ {\vphantom {{[2m - (1 - \psi )\theta^{2} ]C^{2} } {(2me^{2} }}} \right. \kern-0pt} {(2me^{2} }})\) and \(\Pi_{M}^{c\psi * } = {{\{ 2(a - c)meC - [4m - (2 - \psi )\theta^{2} ]C^{2} \} } \mathord{\left/ {\vphantom {{\{ 2(a - c)meC - [4m - (2 - \psi )\theta^{2} ]C^{2} \} } {(2me^{2} )}}} \right. \kern-0pt} {(2me^{2} )}}\) when \(C \ge C_{3} .\) When \(C \ge C_{3} ,\) whether \(w^{c\psi * } = {{[ame - (2m - \theta^{2} )C]} \mathord{\left/ {\vphantom {{[ame - (2m - \theta^{2} )C]} {(me)}}} \right. \kern-0pt} {(me)}}\) is higher than production cost \(c\) is not deterministic. Comparing these two parameters, we can derive that, if \(C_{3} \le C \le C_{4} ,\) \(w^{c\psi * } \ge c;\) if \(C > C_{4} ,\) \(w^{c\psi * } < c,\) where \(C_{4} = {{me(a - c)} \mathord{\left/ {\vphantom {{me(a - c)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}.\) Thus, when \(C > C_{4} ,\) the supply chain is non-coordinated.

Summarizing the above analysis, we can get Theorem 4.

Proof of Theorem 5

Following a similar process in proving Theorem 3, we can get Theorem 5.

Proof of Theorem 6

Based on Theorem 1, we know that \(\Pi_{R}^{\psi * } = {{m(a - c - be)^{2} (1 - \psi )^{3} [2(1 - \psi )m - \theta^{2} ]} \mathord{\left/ {\vphantom {{m(a - c - be)^{2} (1 - \psi )^{3} [2(1 - \psi )m - \theta^{2} ]} {\{ 2\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \}^{2} }}} \right. \kern-0pt} {\{ 2\{ 2(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + \psi \theta^{2} \}^{2} }}\}\) and \(\Pi_{M}^{\psi * } = {{m(a - c - be)^{2} (1 - \psi )^{2} } \mathord{\left/ {\vphantom {{m(a - c - be)^{2} (1 - \psi )^{2} } {\{ 4(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + 2\psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 4(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + 2\psi \theta^{2} \} }} + bC\) when \(0 < C < C_{1} ;\) \(\Pi_{R}^{\psi * } = {{[2(1 - \psi )m - \theta^{2} ]C^{2} } \mathord{\left/ {\vphantom {{[2(1 - \psi )m - \theta^{2} ]C^{2} } {[2(1 - \psi )me^{2} ]}}} \right. \kern-0pt} {[2(1 - \psi )me^{2} ]}}\) and \(\Pi_{M}^{\psi * } = {{m(a - c - be)^{2} (1 - \psi )^{2} } \mathord{\left/ {\vphantom {{m(a - c - be)^{2} (1 - \psi )^{2} } {\{ 4(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + 2\psi \theta^{2} \} }}} \right. \kern-0pt} {\{ 4(1 - \psi )[2(1 - \psi )m - \theta^{2} ] + 2\psi \theta^{2} \} }} + bC\) when \(C \ge C_{1}\) with the cost-sharing contract. Based on Theorem 3, we know that \(\Pi_{R}^{c\psi * } = {{m(a - c - be)[2m - (1 - \psi )\theta^{2} ]} \mathord{\left/ {\vphantom {{m(a - c - be)[2m - (1 - \psi )\theta^{2} ]} {[2(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(2m - \theta^{2} )^{2} ]}}\) and \(\Pi_{M}^{c\psi * } = bC - {{\psi m(a - c - be)^{2} \theta^{2} } \mathord{\left/ {\vphantom {{\psi m(a - c - be)^{2} \theta^{2} } {[2(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(2m - \theta^{2} )^{2} ]}}\) when \(0 < C < C_{3} ;\) \(\Pi_{R}^{c\psi * } = {{[2m - (1 - \psi )\theta^{2} ]C^{2} } \mathord{\left/ {\vphantom {{[2m - (1 - \psi )\theta^{2} ]C^{2} } {(2me^{2} }}} \right. \kern-0pt} {(2me^{2} }})\) and \(\Pi_{M}^{c\psi * } = {{\{ 2(a - c)meC - [4m - (2 - \psi )\theta^{2} ]C^{2} \} } \mathord{\left/ {\vphantom {{\{ 2(a - c)meC - [4m - (2 - \psi )\theta^{2} ]C^{2} \} } {(2me^{2} )}}} \right. \kern-0pt} {(2me^{2} )}}\) when \(C_{3} \le C \le C_{4} .\) To achieve a win–win result for the profits of the manufacturer and retailer, it needs \(\Pi_{R}^{c\psi * } - T_{1} > \Pi_{R}^{\psi * }\) and \(\Pi_{M}^{c\psi * } + T_{1} > \Pi_{M}^{\psi * } .\) Hence, we can derive the upper bound and lower bound of \(T_{1}\) which can be seen in Theorem 6. Similarly, we can derive the boundary conditions of \(T_{2}\) with the quantity-discount contract.

Thus, there exists an interval \((\underline {T}_{i} ,\overline{T}_{i} )\) of \(T_{i}\) to achieve Pareto improvement for the profits of the manufacturer and retailer with the cost-sharing and quantity-discount contracts.

Proof of Theorem 7

The demand functions and the profit function of the centralized supply chain are \(\hat{q}_{1} = a - \hat{p}_{1} + r(\hat{p}_{2} - \hat{p}_{1} ) + \theta \hat{s},\) \(\hat{q}_{2} = a - \hat{p}_{2} + r(\hat{p}_{1} - \hat{p}_{2} ) + \theta \hat{s},\) \(\hat{\pi } = \hat{p}_{1} \hat{q}_{2} + \hat{p}_{2} \hat{q}_{2} - c(\hat{q}_{1} + \hat{q}_{2} ) - b[e(\hat{q}_{1} + \hat{q}_{2} ) - C] - m\hat{s}^{2} .\) Then we let the first partial derivatives of \(\hat{\pi }\) with respect to \(\hat{q}_{1} ,\) \(\hat{q}_{2}\) and \(\hat{s}\) be equal to zero. That is, \({{\partial \hat{\pi }} \mathord{\left/ {\vphantom {{\partial \hat{\pi }} {\partial \hat{q}_{1} }}} \right. \kern-0pt} {\partial \hat{q}_{1} }} = 0,\) \({{\partial \hat{\pi }} \mathord{\left/ {\vphantom {{\partial \hat{\pi }} {\partial \hat{q}_{2} }}} \right. \kern-0pt} {\partial \hat{q}_{2} }} = 0\) and \({{\partial \hat{\pi }} \mathord{\left/ {\vphantom {{\partial \hat{\pi }} {\partial \hat{s}}}} \right. \kern-0pt} {\partial \hat{s}}} = 0.\) And the Hessian matrix of \(\hat{\pi }\) is \(H_{2} = \left( {\begin{array}{*{20}c} {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{q}_{1}^{2} }}} & {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{q}_{1} \partial \hat{q}_{2} }}} & {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{q}_{1} \partial \hat{s}}}} \\ {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{q}_{2} \partial \hat{q}_{1} }}} & {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{q}_{2}^{2} }}} & {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{q}_{2} \partial \hat{s}}}} \\ {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{s}\partial \hat{q}_{1} }}} & {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{s}\partial \hat{q}_{2} }}} & {\frac{{\partial^{2} \hat{\pi }}}{{\partial \hat{s}^{2} }}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - \frac{2(1 + r)}{{1 + 2r}}} & { - \frac{2r}{{1 + 2r}}} & \theta \\ { - \frac{2r}{{1 + 2r}}} & { - \frac{2(1 + r)}{{1 + 2r}}} & \theta \\ \begin{gathered} \hfill \\ \theta \hfill \\ \end{gathered} & \begin{gathered} \hfill \\ \theta \hfill \\ \end{gathered} & \begin{gathered} \hfill \\ - 2m \hfill \\ \end{gathered} \\ \end{array} } \right),\) which is verified to be negative definite. The optimal decisions from the first order conditions are \(\hat{q}_{{_{1} }}^{*} = \hat{q}_{{_{2} }}^{*} = {{m(a - c - be)} \mathord{\left/ {\vphantom {{m(a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}},\) \(\hat{s}^{*} = {{\theta (a - c - be)} \mathord{\left/ {\vphantom {{\theta (a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}.\) Then, submitting them into the demand functions and profit function of the centralized supply chain, we obtain \(\hat{p}_{{_{1} }}^{*} = \hat{p}_{{_{2} }}^{*} = c + be + {{m(a - c - be)} \mathord{\left/ {\vphantom {{m(a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}},\)\(\hat{\pi }^{*} = {{[2mbC + m(a - c - be)^{2} - bC\theta^{2} ]} \mathord{\left/ {\vphantom {{[2mbC + m(a - c - be)^{2} - bC\theta^{2} ]} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}.\)

Similar to the analysis of Theorem 1, the above results are true if \(e(\hat{q}_{{_{1} }}^{*} + \hat{q}_{{_{2} }}^{*} ) > C.\) If \(e(\hat{q}_{{_{1} }}^{*} + \hat{q}_{{_{2} }}^{*} ) \le C,\) according to the assumption \(e(\hat{q}_{{_{1} }}^{*} + \hat{q}_{{_{2} }}^{*} ) \ge C,\) the manufacturer uses all the allocated credits (i.e., the cap) to make production, i.e., \(\hat{q}_{{_{1} }}^{*} + \hat{q}_{{_{2} }}^{*} = {C \mathord{\left/ {\vphantom {C e}} \right. \kern-0pt} e}.\) We simplify the profit function \(\hat{\pi } = \hat{p}_{1} \hat{q}_{2} + \hat{p}_{2} \hat{q}_{2} - c(\hat{q}_{1} + \hat{q}_{2} ) - b[e(\hat{q}_{1} + \hat{q}_{2} ) - C] - m\hat{s}^{2}\) and get \(\hat{\pi } = - m\hat{s}^{2} - {{[e(\hat{q}_{1}^{2} + \hat{q}_{2}^{2} ) + {{C^{2} r} \mathord{\left/ {\vphantom {{C^{2} r} e}} \right. \kern-0pt} e} + C(1 + 2r)(c - a - \hat{s}\theta )]} \mathord{\left/ {\vphantom {{[e(\hat{q}_{1}^{2} + \hat{q}_{2}^{2} ) + {{C^{2} r} \mathord{\left/ {\vphantom {{C^{2} r} e}} \right. \kern-0pt} e} + C(1 + 2r)(c - a - \hat{s}\theta )]} {[e(1 + 2r)]}}} \right. \kern-0pt} {[e(1 + 2r)]}}.\) It is acknowledged that \(\hat{q}_{1}^{2} + \hat{q}_{2}^{2} \ge {{(\hat{q}_{1} + \hat{q}_{2} )^{2} } \mathord{\left/ {\vphantom {{(\hat{q}_{1} + \hat{q}_{2} )^{2} } 2}} \right. \kern-0pt} 2}\) and \(\hat{q}_{1}^{2} + \hat{q}_{2}^{2}\) obtains the minimum value \({{(\hat{q}_{1} + \hat{q}_{2} )^{2} } \mathord{\left/ {\vphantom {{(\hat{q}_{1} + \hat{q}_{2} )^{2} } 2}} \right. \kern-0pt} 2}\) when \(\hat{q}_{1} = \hat{q}_{2} .\) Then we can obtain \(\hat{q}_{1} = \hat{q}_{2} = {C \mathord{\left/ {\vphantom {C {(2e)}}} \right. \kern-0pt} {(2e)}}.\) That means \(\hat{\pi }\) obtains the maximum value when \(\hat{q}_{{_{1} }}^{*} = \hat{q}_{{_{2} }}^{*} = {C \mathord{\left/ {\vphantom {C {(2e)}}} \right. \kern-0pt} {(2e)}}.\) Submitting the optimal production quantities into the demand functions and profit function of the centralized supply chain, we solve the equation \({{\partial \hat{\pi }} \mathord{\left/ {\vphantom {{\partial \hat{\pi }} {\partial \hat{s}}}} \right. \kern-0pt} {\partial \hat{s}}} = 0\) and obtain \(\hat{s}^{*} = {{C\theta } \mathord{\left/ {\vphantom {{C\theta } {(2me)}}} \right. \kern-0pt} {(2me)}}.\) Submitting \(\hat{q}_{{_{1} }}^{*} ,\) \(\hat{q}_{{_{2} }}^{*}\) and \(\hat{s}^{*}\) into related demand and profit functions, we obtain \(\hat{p}_{{_{1} }}^{*} = \hat{p}_{{_{2} }}^{*} = [{{2ame - (m - \theta^{2} )C]} \mathord{\left/ {\vphantom {{2ame - (m - \theta^{2} )C]} {(2me)}}} \right. \kern-0pt} {(2me)}},\) \(\hat{\pi }^{*} = {{[4(a - c)meC - (2m - \theta^{2} )C^{2} ]} \mathord{\left/ {\vphantom {{[4(a - c)meC - (2m - \theta^{2} )C^{2} ]} {(4me^{2} )}}} \right. \kern-0pt} {(4me^{2} )}}.\)

Proof of Theorem 8

We use a contract \((\hat{w}^{c\psi *} ,\hat{s}^{c\psi *} )\) to explore the supply chain coordination, where \(\hat{s}^{*} = {{\theta (a - c - be)} \mathord{\left/ {\vphantom {{\theta (a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}\) when \(0 < C < C_{6}\) and \(\hat{s}^{*} = {{C\theta } \mathord{\left/ {\vphantom {{C\theta } {(2me)}}} \right. \kern-0pt} {(2me)}}\) when \(C \ge C_{6} .\) Similar to the analysis of Theorem 1, we obtain the response function \(\hat{q}_{1}^{\psi } = - {{[\hat{q}_{2}^{\psi } r + (1 + 2r)(w - a - \hat{s}^{*} \theta )]} \mathord{\left/ {\vphantom {{[\hat{q}_{2}^{\psi } r + (1 + 2r)(w - a - \hat{s}^{*} \theta )]} {[2(1 + r)]}}} \right. \kern-0pt} {[2(1 + r)]}}\) in the decentralized supply chain. In order to let \(\hat{q}_{1}^{\psi } = \hat{q}_{1}^{*}\) and \(\hat{q}_{2}^{\psi } = \hat{q}_{2}^{*} ,\) we derive that \(\hat{w}^{c\psi *} = c + be + {{(a - c - be)mr} \mathord{\left/ {\vphantom {{(a - c - be)mr} {[(1 + 2r)(2m - \theta^{2} )]}}} \right. \kern-0pt} {[(1 + 2r)(2m - \theta^{2} )]}}\) when \(0 < C < C_{6} ;\) \(\hat{w}^{c\psi *} = [(1 + 2r){{(2ame + C\theta^{2} ) - mC(2 + 3r)]} \mathord{\left/ {\vphantom {{(2ame + C\theta^{2} ) - mC(2 + 3r)]} {[2(1 + 2r)me]}}} \right. \kern-0pt} {[2(1 + 2r)me]}}\) when \(C \ge C_{6} .\) Thus, the profits of the two retailers and manufacturer are \(\hat{\pi }_{{R_{1} }}^{c\psi *} = \hat{\pi }_{{R_{2} }}^{c\psi *} = m(a - c - be)^{2} [2m{{(1 + r) - (1 + 2r)(1 - \psi )\theta^{2} ]} \mathord{\left/ {\vphantom {{(1 + r) - (1 + 2r)(1 - \psi )\theta^{2} ]} {[2(1 + 2r)(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(1 + 2r)(2m - \theta^{2} )^{2} ]}}\) and \(\hat{\pi }_{M}^{c\psi *} = m(a - c - be)^{2} [{{2mr - (1 + 2r)\theta^{2} \psi ]} \mathord{\left/ {\vphantom {{2mr - (1 + 2r)\theta^{2} \psi ]} {[(1 + 2r)(2m - \theta^{2} )^{2} ] + bC}}} \right. \kern-0pt} {[(1 + 2r)(2m - \theta^{2} )^{2} ] + bC}}\) when \(0 < C < C_{6} ;\) \(\hat{\pi }_{{R_{1} }}^{c\varphi *} = \hat{\pi }_{{R_{2} }}^{c\varphi *} = C^{2} [{{2m(1 + r) - (1 + 2r)\theta^{2} (1 - \psi )]} \mathord{\left/ {\vphantom {{2m(1 + r) - (1 + 2r)\theta^{2} (1 - \psi )]} {[8e^{2} (1 + 2r)m]}}} \right. \kern-0pt} {[8e^{2} (1 + 2r)m]}}\) and \(\hat{\pi }_{M}^{c\psi *} = C[{{4em(1 + 2r)(a - c) - 2Cm(2 + 3r) + C(1 + 2r)\theta^{2} (2 - \psi )]} \mathord{\left/ {\vphantom {{4em(1 + 2r)(a - c) - 2Cm(2 + 3r) + C(1 + 2r)\theta^{2} (2 - \psi )]} {[4e^{2} (1 + 2r)m]}}} \right. \kern-0pt} {[4e^{2} (1 + 2r)m]}}\) when \(C \ge C_{6} .\) When \(C \ge C_{6} ,\) we derive that, if \(C_{6} \le C \le C_{7} ,\) \(\hat{w}^{c\psi *} \ge c;\) if \(C > C_{7} ,\) \(\hat{w}^{c\psi *} < c,\) where \(C_{7} = {{2(a - c)me} \mathord{\left/ {\vphantom {{2(a - c)me} {[{{2m(2 + 3r)} \mathord{\left/ {\vphantom {{2m(2 + 3r)} {(2 + 4r) - \theta^{2} }}} \right. \kern-0pt} {(2 + 4r) - \theta^{2} }}]}}} \right. \kern-0pt} {[{{2m(2 + 3r)} \mathord{\left/ {\vphantom {{2m(2 + 3r)} {(2 + 4r) - \theta^{2} }}} \right. \kern-0pt} {(2 + 4r) - \theta^{2} }}]}}.\) Thus, when \(C > C_{7} ,\) the supply chain is non-coordinated.

Summarizing the above analysis, we can get Theorem 8.

Proof of Theorem 9

Following a similar process in proving Theorem 8, we can get Theorem 9.

Proof of Theorem 10

Following a similar process in proving Theorem 1, we can get Theorem 10.

Proof of Theorem 11

We use a contract \((\overline{w}_{1}^{c\psi *} ,\overline{w}_{2}^{c\psi *} ,\overline{s}^{c\psi *} )\) to explore the supply chain coordination, where \(\overline{s}^{*} = {{\theta (a - c - be)} \mathord{\left/ {\vphantom {{\theta (a - c - be)} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}\) when \(0 < C_{{M_{1} }} + C_{{M_{2} }} < C_{9}\) \(\overline{s}^{*} = {{(C_{{M_{1} }} + C_{{M_{2} }} )\theta } \mathord{\left/ {\vphantom {{(C_{{M_{1} }} + C_{{M_{2} }} )\theta } {(2me)}}} \right. \kern-0pt} {(2me)}}\) when \(C_{{M_{1} }} + C_{{M_{2} }} \ge C_{9} .\) We obtain the response functions \(\overline{q}_{1}^{\psi } = - {{[2\overline{q}_{2}^{\psi } r + (1 + 2r)(\overline{w}_{1} - a - \overline{s}^{*} \theta )]} \mathord{\left/ {\vphantom {{[2\overline{q}_{2}^{\psi } r + (1 + 2r)(\overline{w}_{1} - a - \overline{s}^{*} \theta )]} {[2(1 + r)]}}} \right. \kern-0pt} {[2(1 + r)]}}\) and \(\overline{q}_{2}^{\psi } = - {{[2\overline{q}_{1}^{\psi } r + (1 + 2r)(\overline{w}_{2} - a - \overline{s}^{*} \theta )]} \mathord{\left/ {\vphantom {{[2\overline{q}_{1}^{\psi } r + (1 + 2r)(\overline{w}_{2} - a - \overline{s}^{*} \theta )]} {[2(1 + r)]}}} \right. \kern-0pt} {[2(1 + r)]}}\) in the decentralized supply chain. In order to let \(\overline{q}_{1}^{\psi } = \overline{q}_{1}^{*}\) and \(\overline{q}_{2}^{\psi } = \overline{q}_{2}^{*} ,\) we derive that \(\overline{w}_{1}^{c\psi *} = \overline{w}_{2}^{c\psi *} = c + be\) when \(0 < C_{{M_{1} }} + C_{{M_{2} }} < C_{9} ;\) \(\overline{w}_{1}^{c\psi *} = \overline{w}_{2}^{c\psi *} = [{{2ame + (C_{{M_{1} }} + C_{{M_{2} }} )(\theta^{2} - 2m)]} \mathord{\left/ {\vphantom {{2ame + (C_{{M_{1} }} + C_{{M_{2} }} )(\theta^{2} - 2m)]} {(2me)}}} \right. \kern-0pt} {(2me)}}\) when \(C_{{M_{1} }} + C_{{M_{2} }} \ge C_{9} .\) Thus, the profits of the retailer and two manufacturers are \(\overline{\pi }_{R}^{c\psi *} = m(a - c - be)^{2} [2m{{ - (1 - \psi )\theta^{2} ]} \mathord{\left/ {\vphantom {{ - (1 - \psi )\theta^{2} ]} {(2m - \theta^{2} )^{2} }}} \right. \kern-0pt} {(2m - \theta^{2} )^{2} }},\) \(\overline{\pi }_{{M_{1} }}^{c\psi *} = bC_{{M_{1} }} - m(a - c - be)^{2} {{\theta^{2} \psi } \mathord{\left/ {\vphantom {{\theta^{2} \psi } {[2(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(2m - \theta^{2} )^{2} ]}}\) and \(\overline{\pi }_{{M_{2} }}^{c\psi *} = bC_{{M_{2} }} - m(a - c - be)^{2} {{\theta^{2} \psi } \mathord{\left/ {\vphantom {{\theta^{2} \psi } {[2(2m - \theta^{2} )^{2} ]}}} \right. \kern-0pt} {[2(2m - \theta^{2} )^{2} ]}}\) when \(0 < C_{{M_{1} }} + C_{{M_{2} }} < C_{9} ;\) \(\overline{\pi }_{R}^{c\psi *} = (C_{{M_{1} }} + C_{{M_{2} }} )^{2} [{{2m - \theta^{2} (1 - \psi )]} \mathord{\left/ {\vphantom {{2m - \theta^{2} (1 - \psi )]} {(4e^{2} m)}}} \right. \kern-0pt} {(4e^{2} m)}},\) \(\bar{\pi }_{{M_{1} }}^{{c\psi *}} = \left\{ {4b\left( {C_{{M_{1} }} - C_{{M_{2} }} } \right)e^{2} m - 4\left( {C_{{M_{1} }} + C_{{M_{2} }} } \right)m\left[ {C_{{M_{1} }} + C_{{M_{2} }} + e(c - a)} \right] + (2 - \psi )(C_{{M_{1} }} + C_{{M_{2} }} )^{2} \theta ^{2} } \right\}/\left( {8e^{2} m} \right)\) and \( \bar{\pi }_{{M_{2} }}^{{c\psi *}} = {{\{ 4b(C_{{M_{2} }} - C_{{M_{1} }} )e^{2} m - 4(C_{{M_{1} }} + C_{{M_{2} }} )m[C_{{M_{1} }} + C_{{M_{2} }} + e(c - a)] + (2 - \psi )(C_{{M_{1} }} + C_{{M_{2} }} )^{2} \theta ^{2} \} } \mathord{\left/ {\vphantom {{\{ 4b(C_{{M_{2} }} - C_{{M_{1} }} )e^{2} m - 4(C_{{M_{1} }} + C_{{M_{2} }} )m[C_{{M_{1} }} + C_{{M_{2} }} + e(c - a)] + (2 - \psi )(C_{{M_{1} }} + C_{{M_{2} }} )^{2} \theta ^{2} \} } {(8e^{2} m)}}} \right. \kern-\nulldelimiterspace} {(8e^{2} m)}} \) when \(C_{{M_{1} }} + C_{{M_{2} }} \ge C_{9} .\) When \(C_{{M_{1} }} + C_{{M_{2} }} \ge C_{9} ,\) we derive that, if \(C_{9} \le C_{{M_{1} }} + C_{{M_{2} }} \le C_{10} ,\) \(\overline{w}_{1}^{c\psi *} = \overline{w}_{2}^{c\psi *} \ge c;\) if \(C_{{M_{1} }} + C_{{M_{2} }} > C_{10} ,\) \(\overline{w}_{1}^{c\psi *} = \overline{w}_{2}^{c\psi *} < c,\) where \(C_{10} = {{2(a - c)me} \mathord{\left/ {\vphantom {{2(a - c)me} {(2m - \theta^{2} )}}} \right. \kern-0pt} {(2m - \theta^{2} )}}.\) Summarizing the above analysis, we can get Theorem 11.

Proof of Theorem 12

Following a similar process in proving Theorem 11, we can get Theorem 12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yang, Y. & Ji, T. The effects of cap-and-trade regulation and sales effort on supply chain coordination. Ann Oper Res (2023). https://doi.org/10.1007/s10479-023-05220-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-023-05220-w

Keywords

Navigation