Skip to main content
Log in

Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we study two-stage affinely adjustable robust multi-objective optimization problems. We show how (weak) Pareto optimal solutions of these robust multi-objective problems can be found by solving conic linear programming problems. We do this by first deriving numerically verifiable conditions that characterize (weak) Pareto optimal solutions of affinely adjustable robust multi-objective programs under a spectrahedron uncertainty set. The uncertainty set covers most of the commonly used uncertainty sets of robust optimization. We then reformulate the weighted-sum optimization problems of the multi-objective problems, derived with the aid of the optimality conditions, as equivalent conic linear programming problems, such as semidefinite programs or second-order cone programs, to find the (weak) Pareto optimal solutions. We illustrate by an example how our results can be used to find a second-stage (weak) Pareto optimal solution by solving a semidefinite program using a commonly available software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable robust solutions of uncertain linear programs. Math. Program.,99(2), Ser. A, 351–376.

  • Ben-Tal, A., Ghaoui, L. El, & Nemirovski, A. (2009) Robust Optimization, Princeton University Press,

  • Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications of robust optimization. SIAM Review, 53, 464–501.

    Article  Google Scholar 

  • Bertsimas, D., & de Ruiter, F. J. C. T. (2016). Duality in two-stage adaptive linear optimization: faster computation and stronger bounds. INFORMS Journal on Computing, 28(3), 500–511.

    Article  Google Scholar 

  • Bertsimas, D., & Goyal, V. (2013). On the approximability of adjustable robust convex optimization under uncertainty. Mathematical Methods of Operational Research, 77(3), 323–343.

    Article  Google Scholar 

  • Blekherman, G., Parrilo, P. A., & Thomas, R. (2012). Semidefinite Optimization and Convex Algebraic Geometry. Philadelphia: SIAM Publications.

    Book  Google Scholar 

  • Chen, A., & Zhang, Y. (2009). Uncertain linear programs: Extended affinely adjustable robust counterparts. Operations Research, 57(6), 1469–1482.

    Article  Google Scholar 

  • Chuong, T. D. (2017). Robust alternative theorem for linear inequalities with applications to robust multi-objective optimization. Operations Research Letters, 45(6), 575–580.

    Article  Google Scholar 

  • Chuong, T. D. (2018). Linear matrix inequality conditions and duality for a class of robust multi-objective convex polynomial programs. SIAM Journal on Optimization, 28, 2466–2488.

    Article  Google Scholar 

  • Chuong, T. D. (2020). Robust optimality and duality in multiobjective optimization problems under data uncertainty. SIAM Journal on Optimization, 30(2), 1501–1526.

    Article  Google Scholar 

  • Chuong, T. D., & Jeyakumar, V. (2020). Generalized Farkas Lemma with adjustable variables and two-stage robust linear programs. Journal of Optimization Theory and Applications, 187, 488–519.

    Article  Google Scholar 

  • Chuong, T. D., & Jeyakumar, V. (2017). A generalized Farkas lemma with a numerical certificate and linear semi-infinite programs with SDP duals. Linear Algebra and its Applications, 515, 38–52.

    Article  Google Scholar 

  • Chuong, T. D., Mak-Hau, V. H., Yearwood, J., Dazeley, R., Nguyen, M.-T., & Cao, T. (2022). Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04461-x.

    Article  Google Scholar 

  • de Ruiter, F., Ben-Tal, A., Brekelmans, R., & den Hertog, D. (2017). Robust optimization of uncertain multistage inventory systems with inexact data in decision rules. Comp. Manag. Sci., 45–66.

  • Delage, E., & Iancu, D. A. (2015). Robust Multistage Decision Making. INFORMS TutORials in Operations Research, chap., 2, 20–46.

    Google Scholar 

  • Denysiuk, R., Moreira, A. V., Matos, J. C., Oliveira, J.R.M., & Santos, A. (2017) Two-stage multi-objective optimization of maintenance scheduling for pavements, J. Infrastruct. Syst., 23, https://doi.org/10.1061/(ASCE)IS.1943-555X.0000355.

  • Ehrgott, M. (2005). Multicriteria Optimization. Berlin: Springer.

    Google Scholar 

  • Ehrgott, M., Ide, J., & Schobel, A. (2014). Minmax robustness for multi-objective optimization problems. European Journal of Operational Research, 239(1), 17–31.

    Article  Google Scholar 

  • Engau, A., & Devon, S. (2020). Pareto solutions in multicriteria optimization under uncertainty, European. European Journal of Operational Research, 281, 357–368.

    Article  Google Scholar 

  • Fabrizio, A., Nicola, B., Claudio, D. S., Gerardo, M. M., & Giuseppe, P. V. (2016). Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality. Applied Energy, 174, 37–68.

    Article  Google Scholar 

  • Fabrizio, A., Nicola, B., Rosa, F. D. M., Gerardo, M. M., & Giuseppe, P. V. (2017). Resilience of robust cost-optimal energy retrofit of buildings to globalwarming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167.

    Article  Google Scholar 

  • Feige, U., Jain, K., Mahdian, M., & Mirrokni, V. (2007) Robust Combinatorial Optimization with Exponential Scenarios, In: Fischetti M., Williamson D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2007. Lecture Notes in Computer Science, vol 4513. Springer.

  • Fredriksson, A. (2017) Robust optimization in radiation therapy, Advances and Trends in optimization with engineering applications, SIAM Publications.

  • Georgiev, P. G., Luc, D. T., & Pardalos, P. M. (2013). Robust aspects of solutions in deterministic multiple objective linear programming. European Journal of Operational Research, 229(1), 29–36.

    Article  Google Scholar 

  • Goberna, M. A., & López, M. A. (1998). Linear Semi-Infinite Optimization. Chichester: John Wiley & Sons.

    Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Perez, J. (2022). The radius of robust feasibility of uncertain mathematical programs: a survey and recent developments. European Journal of Operational Research, 296(3), 749–763.

    Article  Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Perez, J. (2018). Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs, European. European Journal of Operational Research, 242, 40–50.

    Article  Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Vicente-Perez, J. (2015). Robust solutions to multi-objective linear programs with uncertain data. European Journal of Operational Research, 242(3), 730–743.

    Article  Google Scholar 

  • Goberna, M. A., Jeyakumar, V., Li, G., & Perez, J.-V. (2014). Robust solutions of multi-objective linear semi-infinite programs under constraint data uncertainty. SIAM Journal on Optimization, 24(3), 1402–1419.

    Article  Google Scholar 

  • Grant, M., & Boyd, S. (2008) Graph implementations for nonsmooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pages 95-110. Springer,

  • Huang, R.-H., Yang, C.-L., & Hsu, C.-T. (2015). Multi-objective two-stage multiprocessor flow shop scheduling-a subgroup particle swarm optimisation approach. International Journal of Systems Science, 46(16), 3010–3018.

    Article  Google Scholar 

  • Ide, J., & Schöbel, A. (2016). Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectrum, 38, 235–271.

    Article  Google Scholar 

  • Jeyakumar, V., & Luc, D. T. (2008) Nonsmooth Vector Functions and Continuous Optimization, Springer Series in Optimization and Its Applications, Springer.

  • Kuhn, K., Raith, A., Schmidt, M. & Schöbel, A. (2016) Bi-objective robust optimisation,European Journal of Operational Research 252, 418–431 .

  • Kuroiwa, D., & Lee, G. M. (2012). On robust multi-objective optimization. Vietnam Journal of Mathematics, 40(2–3), 305–317.

    Google Scholar 

  • La Torre, D., & Mendivil, F. (2018). Portfolio optimization under partial uncertainty and incomplete information: a probability multimeasure-based approach. Annals of Operations Research, 267(1–2), 267–279.

    Article  Google Scholar 

  • Lee, J. H., & Jiao, L. (2021). Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data. Annals of Operations Research, 296, 803–820.

    Article  Google Scholar 

  • Lin, W., Jin, X., Mu, Y., Jia, H., Xu, X., Yu, X., & Zhao, B. (2018). A two-stage multi-objective scheduling method for integrated community energy system. Applied Energy, 216, 428–441.

    Article  Google Scholar 

  • Mordukhovich, B. S., & Nam, N. M. (2014). An easy path to convex analysis and applications, Synthesis Lectures on Mathematics and Statistics, 14. Williston: Morgan & Claypool Publishers.

    Google Scholar 

  • Rockafellar, R. T. (1970). Convex Analysis. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Sion, M. (1958). On general minimax theorems. Pacific Journal of mathematics, 8, 171–176.

    Article  Google Scholar 

  • Spieker, H., Hagg, A., Gaier, A., Meilinger, S., & Asteroth, A. (2017). Multi-stage evolution of single- and multi-objective MCLP: Successive placement of charging stations. Soft Computing, 21, 4859–4872.

    Article  Google Scholar 

  • Yanikoglu, I., Gorissen, B. L., & den Hertog, D. (2019). A survey of adjustable robust optimization. European Journal of Operational Research, 277(3), 799–813.

    Article  Google Scholar 

  • Wiecek, M. M., & Dranichak, G. M. (2016) Robust multi-objective optimization for decision making under uncertainty and conflict. In A. Gupta and A. Capponi (Eds.), TutORials in operations research, optimization challenges in complex, networked, and risky systems (pp. 84-114). INFORMS,

  • Zamani, M., Soleimani-damaneh, M., & Kabgani, A. (2015). Robustness in nonsmooth nonlinear multi-objective programming. European Journal of Operational Research, 247(2), 370–378.

    Article  Google Scholar 

  • Zheng, J., Wu, Q., & Jing, Z. (2017). Coordinated scheduling strategy to optimize conflicting benefits for daily operation of integrated electricity and gas networks. Applied Energy, 192, 370–81.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their constructive comments and valuable suggestions which have contributed to the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Chuong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the second author was supported by a research grant from Australian Research Council.

Appendix: Robust multi-objective linear programs and SDP reformulations

Appendix: Robust multi-objective linear programs and SDP reformulations

In this appendix, we give optimality conditions and semidefinite programming reformulations for a single-stage robust multi-objective linear optimization models that can be used to transform the previous two-stage optimization problem to a single-stage problem.

Let us consider a robust counterpart of (UP) given by

figure n

where \(f_r(x):=\max \limits _{u\in U}c_r(u)^\top x, r=1,\dots ,p\) for \( x\in {\mathbb {R}}^{n}.\)

The following lemma presents optimality conditions of the robust multi-objective program (RP) that has been employed in the proofs of the previous sections.

Lemma 4.1

(Necessary optimality for (RP)) For the problem  (RP), let the cone C be closed, where

$$\begin{aligned} C:=\textrm{coneco}\big \{\big (a_j(u), b_j(u) \big ), j=1,\ldots ,q\mid u:=(u_1,\ldots ,u_s)\in U\big \}\subset {\mathbb {R}}^{n+1}.\end{aligned}$$
(5.11)

If \(\bar{x}\in {\mathbb {R}}^{n}\) is a weak Pareto solution of problem (RP), then, there exist \((\alpha _1,\ldots ,\alpha _p)\in {\mathbb {R}}^p_+\setminus \{0\}\), \(\lambda _j\ge 0, j= 1,\ldots ,q, \mu \ge 0\), \({{\bar{u}}}^r \in U, r=1,\ldots ,p\) and \( u^j\in U, j= 1,\ldots ,q,\) such that

$$\begin{aligned}&\sum _{r=1}^p\alpha _rc_r({{\bar{u}}}^r)+\sum \limits _{j=1}^q\lambda _ja_j(u^j)=0_n,\quad \sum \limits _{j=1}^q\lambda _jb_j(u^j)+\sum _{r=1}^p \alpha _rf_r(\bar{x})+\mu =0.\end{aligned}$$
(5.12)

Proof

The proof uses a classical alternative theorem (see e.g., (Rockafellar 1970, Theorem 21.1) to show that every weak Pareto solution can be determined by a convex program  (RP) (cf. Ehrgott (2005)). Applying a classical minimax theorem (see e.g., ( Sion 1958, Theorem 4.2) and a strong separation theorem (see e.g., Mordukhovich & Nam 2014, Theorem 2.2) gives the desired result. We omit the details for the purpose of a shorter presentation the paper. \(\square \)

For each \(\alpha :=(\alpha _1,\ldots ,\alpha _p)\in {\mathbb {R}}^p_+\setminus \{0\},\) we consider a (scalar) robust weighted-sum optimization problem of (RP) as follows:

figure o

A semidefinite programming reformulation problem for (RP\(_{\alpha }\)) is given by

figure p

The following lemma presents an exact semidefinite programming (SDP) reformulation for (RP\(_{\alpha }\)) that has been employed in the proofs of the previous sections.

Lemma 4.2

(Exact SDP reformulation for (RP\(_{\alpha }\))) Let \(\alpha :=(\alpha _1,\ldots ,\alpha _p)\in {\mathbb {R}}^p_+\setminus \{0\}\) be such that the problem (RP\(_{\alpha }\)) admits an optimal solution and assume that \({{\bar{x}}}\in {\mathbb {R}}^{n}\) is an optimal solution of problem (RP\(_{\alpha }\)). Assume that the cone C in (5.11) is closed and there exists \({{\hat{u}}}:= ({{\hat{u}}}_1,\ldots ,{{\hat{u}}}_s)\in {\mathbb {R}}^s \) such that \(A_0+\sum _{i=1}^s{{\hat{u}}}_iA_i\succ 0\). Then, there exist \(\tilde{Z}_r\succeq 0, r=1,\ldots ,p, Z_j\succeq 0, j=1,\ldots ,q\) such that \(({{\bar{x}}},{{\tilde{Z}}}_1,\ldots ,{{\tilde{Z}}}_p,Z_1,\ldots , Z_q)\) is an optimal solution of problem (RP\(^*_{\alpha }\)) and

$$\begin{aligned} \textrm{val}(RP_{\alpha })= \textrm{val} (RP^{*}_{\alpha })={\sum _{r=1}}^p{\alpha _{r}}\big ({c_{r}}^{0\top }{{\bar{x}}} +\textrm{Tr}({A_{0}}{{\tilde{Z}}}_{r})\big ), \end{aligned}$$
(4.13)

where val(RP\(_{\alpha }\)) and val(RP\(^*_{\alpha }\)) stand for the optimal values of problem (RP\(_{\alpha }\)) and problem (RP\(^*_{\alpha }\)), respectively.

Proof

The proof uses a strong duality in semidefinite programming (cf. Blekherman 2012, Theorem 2.15) to get the desired result. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuong, T.D., Jeyakumar, V. Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming. Ann Oper Res (2022). https://doi.org/10.1007/s10479-022-05104-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-022-05104-5

Keywords

Mathematics Subject Classification

Navigation