Skip to main content
Log in

Approximations for generalized unsplittable flow on paths with application to power systems optimization

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The Unsplittable Flow on a Path (UFP) problem has garnered considerable attention as a challenging combinatorial optimization problem with notable practical implications. Steered by its pivotal applications in power engineering, the present work formulates a novel generalization of UFP, wherein demands and capacities in the input instance are monotone step functions over the set of edges. As an initial step towards tackling this generalization, we draw on and extend ideas from prior research to devise a quasi-polynomial time approximation scheme under the premise that the demands and capacities lie in a quasi-polynomial range. Second, retaining the same assumption, an efficient logarithmic approximation is introduced for the single-source variant of the problem. Finally, we round up the contributions by designing a (kind of) black-box reduction that, under some mild conditions, allows to translate LP-based approximation algorithms for the studied problem into their counterparts for the Alternating Current Optimal Power Flow problem—a fundamental workflow in operation and control of power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that, for \(\forall ~r \in \{1,\ldots ,d\}\), the capacity function \(c^r(\cdot )\) adheres to this form trivially with \(T_r=a^{r,t}=1, b^{r,t}(\cdot )=c^r(\cdot )\) for \(\forall ~t\) and \(e^{r} = e_1, {\hat{e}}^{r}=e_m\).

  2. For clarity, it is assumed in (9) that the strict inequality is replaced by an inequality when \(a_k^{r,t}=0\).

  3. This inequality is captured by the first constraint appearing in the subproblem, and thus can be extracted in O(1) time.

  4. Traditionally, the objective is to minimize the generation cost \(c(S_{0,1}^{\textrm{R}})\), which is typically a non-decreasing convex function of the active generation power \(S_{0,1}^{\textrm{R}}\). In the discrete demand case under study, we combine the minimization of the generation cost with the utility maximization of the satisfied demands by using the function \(f_{\textsc {OPF}}(s_0,x)\), where \(f_0(s_0^{\textrm{R}})\triangleq Y-c(S_{0,1}^{\textrm{R}})=Y-c(-s_{0}^{\textrm{R}}))\), for a sufficiently large number Y, is a nonnegative concave function, non-decreasing in \(s_{0}^{\textrm{R}}).\)

  5. Note that Cons. (37) can be rewritten as

    $$\begin{aligned} \Bigg \Vert \left( \begin{array}{c} 2S_{i,j}^{\textrm{R}}\\ 2S_{i,j}^{\textrm{I}}\\ \ell _{i,j}-v_i \end{array} \right) \Bigg \Vert _2 \le \ell _{i,j}+v_i\,. \end{aligned}$$

Abbreviations

\(\mathcal G\) :

Line graph

\(\mathcal {V}\) :

Set of vertices (indexed by i or j)

\(\mathcal {E} \) :

Set of m edges (indexed by e or (ij))

\(\mathcal I\) :

Set of n users (indexed by k)

\(\mathcal {Q}\) :

Grouping (of cardinality Q) of users based on utility-to-demand ratio

\(\mathcal I^{q}\) :

Set of users in group \(q \in \mathcal {Q}\)

\(\mathcal L^q\) :

Set of users with “large” demands in group \(q \in \mathcal {Q}\)

\(\mathcal S^q\) :

Set of users with “small” demands in group \(q \in \mathcal {Q}\)

d :

Number of dimensions

\(u_k\) :

User k’s utility value

\(x_k\) :

Decision variable for user k

\(f_k^r (\cdot )\) :

User k’s demand function over \(\mathcal {E} \) in dimension \(r \in \{1,2, \ldots , d\}\)

\(e_k^r, \hat{e}_k^r\) :

User k’s demand function’s binding edges in dimension \(r \in \{1,2, \ldots , d\}\)

\(c^r (\cdot )\) :

Capacity function over \(\mathcal {E} \) in dimension \(r \in \{1,2, \ldots , d\}\)

\(T_1, \ldots , T_d\) :

d positive integers

T :

Maximum among \(T_1, \ldots , T_d\)

\(C_1, \ldots , C_d\) :

d integers each greater than 1

\(P_r\) :

Number of edge partitions in dimension \(r \in \{1,2, \ldots , d\}\)

\(\epsilon \) :

Constant in (0, 1)

\(\mathcal T\) :

Graph of a radial distribution network

\(\mathcal {V}^+\) :

Set of vertices excluding the root 0

\(\mathcal {V}_i^+\) :

Set of vertices in \(\mathcal {V}^+\) excluding the node i

\(\mathcal N\) :

Set of all users (electrical loads) (indexed by k)

\(\mathcal U_j\) :

Set of users at node j

\(\mathcal N_j\) :

Set of users residing on the subpath rooted at node j

\(\mathcal F\) :

Set of users with elastic power demands

\(\mathcal {P}_j\) :

The (unique) path from node j to the root 0

\(s_k\) :

User k’s complex power demand

\(z_{i,j}\) :

Impedance of power line (ij)

\(V_j\) :

Voltage at node j

\(v_j\) :

Voltage magnitude square at node j

\(I_{i,j}\) :

Current traversing through line (ij)

\(l_{i,j}\) :

Squared magnitude of current flowing through line (ij)

\(S_{i,j}\) :

Complex power flowing from node i to node j

References

  • Adamaszek, A., Chalermsook, P., Ene, A., & Wiese, A. (2016). Submodular unsplittable flow on trees. In International conference on integer programming and combinatorial optimization (pp. 337–349). Springer.

  • Albers, S., Arora, S., & Khanna, S. (1999). Page replacement for general caching problems. SODA, Citeseer, 99, 31–40.

    Google Scholar 

  • Anagnostopoulos, A., Grandoni, F., Leonardi, S., & Wiese, A. (2014). A mazing (2+ \(\varepsilon \))-approximation for unsplittable flow on a path. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms (pp. 26–41). Society for Industrial and Applied Mathematics.

  • Bansal, N., Chakrabarti, A., Epstein, A., & Schieber, B. (2006). A quasi-PTAS for unsplittable flow on line graphs. In Proceedings of the thirty-eighth annual ACM symposium on theory of computing (pp. 721–729). ACM.

  • Bansal, N., Friggstad, Z., Khandekar, R., & Salavatipour, M. R. (2014). A logarithmic approximation for unsplittable flow on line graphs. ACM Transactions on Algorithms (TALG), 10(1), 1.

    Article  Google Scholar 

  • Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., & Schieber, B. (2001). A unified approach to approximating resource allocation and scheduling. Journal of the ACM (JACM), 48(5), 1069–1090.

    Article  Google Scholar 

  • Baran, M., & Wu, F. F. (1989). Optimal sizing of capacitors placed on a radial distribution system. IEEE Transactions on Power Delivery, 4(1), 735–743. https://doi.org/10.1109/61.19266

    Article  Google Scholar 

  • Batra, J., Garg, N., Kumar, A., Momke, T., & Wiese, A. (2015). New approximation schemes for unsplittable flow on a path. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on discrete algorithms (pp. 47–58). Society for Industrial and Applied Mathematics.

  • Bose, S., Gayme, D. F., Chandy, K. M., & Low, S. H. (2015). Quadratically constrained quadratic programs on acyclic graphs with application to power flow. IEEE Transactions on Control of Network Systems, 2(3), 278–287.

    Article  Google Scholar 

  • Briglia, E., Alaggia, S., & Paganini, F. (2017). Distribution network management based on optimal power flow: Integration of discrete decision variables. In 2017 51st annual conference on information sciences and systems (CISS) (pp. 1–6). https://doi.org/10.1109/CISS.2017.7926079

  • Calinescu, G., Chakrabarti, A., Karloff, H., & Rabani, Y. (2002). Improved approximation algorithms for resource allocation. In International conference on integer programming and combinatorial optimization (pp. 401–414). Springer.

  • Carpentier, J. (1962). Contribution a l’etude du dispatching economique. Bulletin de la Societe Francaise des Electriciens, 3(1), 431–447.

  • Chakrabarti, A., Chekuri, C., Gupta, A., & Kumar, A. (2007). Approximation algorithms for the unsplittable flow problem. Algorithmica, 47(1), 53–78.

    Article  Google Scholar 

  • Chapman, A. C., Verbič, G., & Hill, D. J. (2013). A healthy dose of reality for game-theoretic approaches to residential demand response. In 2013 IREP symposium bulk power system dynamics and control—IX optimization, security and control of the emerging power grid (pp. 1–13). https://doi.org/10.1109/IREP.2013.6629395

  • Chau, S. C. K., Elbassioni, K., & Khonji, M. (2018). Combinatorial optimization of alternating current electric power systems. https://doi.org/10.1561/3100000017

  • Chekuri, C., Mydlarz, M., & Shepherd, F. B. (2007). Multicommodity demand flow in a tree and packing integer programs. ACM Transactions on Algorithms (TALG), 3(3), 27.

    Article  Google Scholar 

  • Chrobak, M., Woeginger, G. J., Makino, K., & Xu, H. (2012). Caching is hard-even in the fault model. Algorithmica, 63(4), 781–794.

    Article  Google Scholar 

  • Cook, D., Faber, V., Marathe, M., Srinivasan, A., & Sussmann, Y. J. (1998). Low-bandwidth routing and electrical power networks. In International colloquium on automata, languages, and programming (pp. 604–615) Springer.

  • Elbassioni, K., Karapetyan, A., & Nguyen, T. T. (2019). Approximation schemes for R-weighted minimization knapsack problems. Annals of Operations Research, 279(1), 367–386.

    Article  Google Scholar 

  • Farivar, M., & Low, S. H. (2013). Branch flow model: Relaxations and convexification-part i. IEEE Transactions on Power Systems, 28(3), 2554–2564.

    Article  Google Scholar 

  • Frank, S., Steponavice, I., & Rebennack, S. (2012). Optimal power flow: A bibliographic survey i. Energy Systems, 3(3), 221–258.

    Article  Google Scholar 

  • Gan, L., Li, N., Topcu, U., & Low, S. H. (2015). Exact convex relaxation of optimal power flow in radial networks. IEEE Transactions on Automatic Control, 60(1), 72–87.

    Article  Google Scholar 

  • Grandoni, F., Mömke, T., & Wiese, A. (2022a). A PTAS for unsplittable flow on a path. In Proceedings of the 54th annual ACM SIGACT symposium on theory of computing (pp. 289–302). Association for Computing Machinery, New York, NY, USA, STOC 2022.

  • Grandoni, F., Mömke, T., & Wiese, A. (2022b). Unsplittable flow on a path: The game! In Proceedings of the 2022 annual ACM-SIAM symposium on discrete algorithms (SODA) (pp. 906–926). https://doi.org/10.1137/1.9781611977073.39

  • Grandoni, F., Momke, T., Wiese, A., & Zhou, H. (2018). A (5/3+ \(\varepsilon \))-approximation for unsplittable flow on a path: Placing small tasks into boxes. In Proceedings of the 50th annual ACM SIGACT symposium on theory of computing (pp. 607–619). ACM.

  • Hall, N. G., & Magazine, M. J. (1994). Maximizing the value of a space mission. European Journal of Operational Research, 78(2), 224–241.

  • Hijazi, H., Coffrin, C., & Hentenryck, P. V. (2017). Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Mathematical Programming Computation, 9(3), 321–367.

    Article  Google Scholar 

  • Huang, S., Wu, Q., Wang, J., & Zhao, H. (2017). A sufficient condition on convex relaxation of ac optimal power flow in distribution networks. IEEE Transactions on Power Systems, 32(2), 1359–1368.

    Google Scholar 

  • Karapetyan, A., Khonji, M., Chau, C., Elbassioni, K., & Zeineldin, H. H. (2018). Efficient algorithm for scalable event-based demand response management in microgrids. IEEE Transactions on Smart Grid, 9(4), 2714–2725. https://doi.org/10.1109/TSG.2016.2616945

    Article  Google Scholar 

  • Karapetyan, A., Khonji, M., Chau, S. C. K., Elbassioni, K., Zeineldin, H., EL-Fouly, T. H. M., & Al-Durra A. (2021). A competitive scheduling algorithm for online demand response in islanded microgrids. IEEE Transactions on Power Systems, 36(4), 3430–3440. https://doi.org/10.1109/TPWRS.2020.3046144

  • Khonji, M., Chau, C. K., & Elbassioni, K. (2018). Optimal power flow with inelastic demands for demand response in radial distribution networks. IEEE Transactions on Control of Network Systems, 5(1), 513–524.

    Article  Google Scholar 

  • Khonji, M., Chau, S. C., & Elbassioni, K. (2020). Combinatorial optimization of ac optimal power flow with discrete demands in radial networks. IEEE Transactions on Control of Network Systems, 7(2), 887–898. https://doi.org/10.1109/TCNS.2019.2951657

    Article  Google Scholar 

  • Khonji, M., Karapetyan, A., Elbassioni, K., & Chau, S. C. K. (2019). Complex-demand scheduling problem with application in smart grid. Theoretical Computer Science, 761, 34–50.

    Article  Google Scholar 

  • Kolliopoulos, S. G., & Stein, C. (2001). Approximation algorithms for single-source unsplittable flow. SIAM Journal on Computing, 31(3), 919–946.

    Article  Google Scholar 

  • Korovesis, P. N., Vokas, G. A., Gonos, I. F., & Topalis, F. V. (2004). Influence of large-scale installation of energy saving lamps on the line voltage distortion of a weak network supplied by photovoltaic station. IEEE Transactions on Power Delivery, 19(4), 1787–1793.

    Article  Google Scholar 

  • Lin, C., & Lin, S. (2008). Distributed optimal power flow with discrete control variables of large distributed power systems. IEEE Transactions on Power Systems, 23(3), 1383–1392. https://doi.org/10.1109/TPWRS.2008.926695

  • Low, S. H. (2014). Convex relaxation of optimal power flow-Part I: Formulations and equivalence. IEEE Transactions on Control of Network Systems, 1(1), 15–27.

    Article  Google Scholar 

  • Low, S. H. (2014). Convex relaxation of optimal power flow-Part II: Exactness. IEEE Transactions on Control of Network Systems, 1(2), 177–189.

    Article  Google Scholar 

  • Mhanna, S., Chapman, A. C., & Verbič, G. (2016). A fast distributed algorithm for large-scale demand response aggregation. IEEE Transactions on Smart Grid, 7(4), 2094–2107. https://doi.org/10.1109/TSG.2016.2536740

    Article  Google Scholar 

  • Momke, T., & Wiese, A. (2015). A (2+ epsilon)-approximation algorithm for the storage allocation. In 42nd International colloquium on automata, languages, and programming (pp. 973–984). Springer.

  • Phillips, C. A., Uma, R., & Wein, J. (2000). Off-line admission control for general scheduling problems. Journal of Scheduling, 3(6), 365–381.

    Article  Google Scholar 

  • Raghavan, P., & Tompson, C. D. (1987). Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4), 365–374.

    Article  Google Scholar 

  • Srinivasan, A. (1999). Improved approximation guarantees for packing and covering integer programs. SIAM Journal on Computing, 29(2), 648–670.

    Article  Google Scholar 

  • Zhang, B., & Tse, D. (2013). Geometry of injection regions of power networks. IEEE Transactions on Power Systems, 28(2), 788–797. https://doi.org/10.1109/TPWRS.2012.2208205

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our sincere appreciation to the Editor and anonymous referee for their time and effort spent on reviewing this work. The paper has been thoroughly revised and its presentation has been improved as a result of the provided constructive comments and remarks, for which we are immensely indebted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areg Karapetyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Khalifa University under Awards No. CIRA-2020-286 and KKJRC-2019-Trans1.

Appendices

Appendix

A Proof of Lemma 2

Proof

For \(r\in [d]\), consider the graph of the fractional profile \(\sum _{k\in \mathcal S^q}f_k^r(e)\tilde{x}_k\) illustrated in Fig. 3. For \(p\in [P_r]\), slice the region between the horizontal axis and horizontal line at height \(h^{q,p,r}\) with \(\frac{1}{\epsilon }+1\) horizontal lines, with inter-distance \(\epsilon h^{q,p,r}\). The intersections of the optimal profile with these lines define a monotone function \(g^{q,r}\), as pictured in Fig. 3, with \(g^{q,r}(e)\in \{l\epsilon h^{p,r}:~l\in \{0,1\ldots ,1/\epsilon \},~p\in [P_r]\}\), for all \(e\in \mathcal {E} \). We adopt a greedy procedure, explained in Algorithm 3 below, to remove a set of demands from \(\mathcal S^q\) in each interval \(\mathcal {E} _p^r\) such that the remaining set of demands fractionally fits below \(g^{q,r}\) (see lines 2-9). The algorithm proceeds by removing the “left-most" set of demands that minimally ensures that the remaining ones in \(\mathcal S^q\) can be packed under capacity \(g^{q,r}\). This defines an intermediate fractional vector \(\bar{{\bar{x}}}\) for separable d-USFP-R[\(\mathcal S^q,g^q\)], where \(g^q=(g^{q,r})_{r\in [d]}\), which can be converted to a basic feasible solution (BFS) with the same or better objective value. Lastly, the fractional components of \(\bar{{\bar{x}}}\) are rounded down yielding an integral solution \({\hat{x}}\).

figure c
Fig. 3
figure 3

A profile and its \((h,\epsilon )\)-restriction

We first show that condition (i) holds when \({\hat{x}}\) is replaced by \({\bar{x}}\). For \(r\in [d]\), let \(\mathcal J^{r}(e_i)\) be the set of demands \(k\in \mathcal S^q\) for which \({\bar{x}}_k\) was set to 0 in step 7 when considering edge \(e_i\in \mathcal {E} \). Consider an edge \(e\in \mathcal {E} _p^r\) such that \(\sum _{k\in \mathcal S^q}f_k^r(e){\bar{x}}_k>0\). Note that \(0\le \sum _{k\in \mathcal S^q}f_k^r(e){\tilde{x}}_k-g^{q,r}(e)\le \epsilon h^{q,p,r}\) by (12) and the definition of \(g^{q,r}\). By the monotonicity of \(f^r_k(\cdot )\) and the condition of the while-loop in step 5 we have

$$\begin{aligned} \sum _{k\in \mathcal S^q}f_k^r(e){\bar{x}}_k&=\sum _{k\in \mathcal S^q}f_k^r(e){\tilde{x}}_k-\sum _{i:~e_i\le e}\sum _{k\in \mathcal J^{r}(e_i)}f_k^r(e){\tilde{x}}_k\\&\le \sum _{k\in \mathcal S^q}f_k^r(e){\tilde{x}}_k-\sum _{i:~e_i\le e}\sum _{k\in \mathcal J^{r}(e_i)}f_k^r(e_i){\tilde{x}}_k\\&\le \sum _{k\in \mathcal S^q}f_k^r(e){\tilde{x}}_k-\epsilon h^{q,p,r}\\&\le g^{q,r}(e). \end{aligned}$$

Since \({\bar{x}}\) is feasible for d-USFP-R[\(\mathcal S^q,g^q\)], one can obtain a BFS \(\bar{{\bar{x}}}\) for the same linear program with \(\sum _{k\in \mathcal S^q}u_k\bar{{\bar{x}}}_k\ge \sum _{k\in \mathcal S}u_k{\bar{x}}_k\) as in step 10 of procedure Modify. Then, round down the fractional components in \(\bar{\bar{x}}\) to obtain an integral solution \({\hat{x}}\). Note that, for all \(e\in \mathcal {E} \),

$$\begin{aligned} \sum _{k\in \mathcal S^q}f_k^r(e){\hat{x}}_k\le \sum _{k\in \mathcal S^q}f_k^r(e)\bar{{\bar{x}}}_k\le g^{q,r}(e)\le \sum _{k\in \mathcal S^q}f_k^r(e)\tilde{x}_k, \end{aligned}$$

and hence (i) holds.

Note that the total fractional utility of demands removed by Algorithm 3 in steps 2-9 is

$$\begin{aligned} \sum _{r\in [d],~e\in \mathcal {E} }\sum _{k\in \mathcal J^r(e)}u_k{\tilde{x}}_k&= \sum _{r\in [d]:~H^{P_r,r}>0}\sum _{p=1}^{P_r}\sum _{e\in \mathcal {E} _p^r}\sum _{k\in \mathcal J^r(e)}u_k{\tilde{x}}_k\\&\le \sum _{r\in \mathcal H^{q}}\sum _{p=1}^{P_r}\sum _{e\in \mathcal {E} _p^r}\sum _{k\in \mathcal J^r(e)} \frac{1}{H^{q,p,r}} \sum _{t=1}^{T_r}a_k^{r,t}b^{r,t}(e_{{\overline{i}}(p,r)}){\tilde{x}}_k\\&=\sum _{r\in \mathcal H^{q}}\sum _{p=1}^{P_r}\frac{1}{H^{q,p,r}} \sum _{e\in \mathcal {E} _p^r}\sum _{k\in \mathcal J^r(e)} f_k^r(e_{{\overline{i}}(p,r)}){\tilde{x}}_k\\&\le \sum _{r\in \mathcal H^{q}}\sum _{p=1}^{P_r}\frac{C_r}{H^{q,p,r}} \left( \sum _{e\in \mathcal {E} _p^r}\sum _{k\in \mathcal J^r(e)} f_k^r(e){\tilde{x}}_k\right) \\&\le \sum _{r\in \mathcal H^{q}0}\sum _{p=1}^{P_r}\frac{C_r}{H^{q,p,r}}(\epsilon h^{q,p,r}+B^{q,p,r}), \end{aligned}$$

where we use the fact that \(k\in \mathcal I^q\) in the first inequality, property (4) in the second inequality, and \(\underline{f}_k^{p,r}\le B^{q,p,r}\) and the condition of the while-loop in step 5 in the last inequality. (Note that we sum above over \(r\in [d]\) such that in \(H^{q,P_r,r}>0\) since \(k\in \mathcal J^r(e)\) implies that \(f_k^r(e)>0\), which in turn implies by (11) that \(H^{q,P_r,r}>0\).)

It follows that

$$\begin{aligned} \sum _{k \in \mathcal S^q}u_k{\bar{x}}_k&\ge \sum _{k \in \mathcal S^q}u_k{\tilde{x}}_k-\sum _{r,e}\sum _{k\in \mathcal J^r(e)}u_k{\tilde{x}}_k \nonumber \\&\ge \sum _{k \in \mathcal S^q}u_k\tilde{x}_k-\sum _{r\in \mathcal H^{q}}\sum _{p=1}^{P_r}\frac{C_r}{H^{q,p,r}}(\epsilon h^{q,p,r}+B^{q,p,r}). \end{aligned}$$
(58)

By the monotonicity of the functions \(f^r_k(\cdot )\), d-USFP-R[\(\mathcal S,g^q\)] has only \(\frac{1}{\epsilon }\sum _{r=1}^dP_r\) non-redundant packing inequalities of the form (1). It follows that the BFS \(\bar{{\bar{x}}}\) computed in step 10 has at most \(\frac{1}{\epsilon }\sum _{r=1}^dP_r\) fractional components \(\bar{{\bar{x}}}\in (0,1)\). Thus,

$$\begin{aligned} \sum _{k \in \mathcal S^q}u_k{{\hat{x}}}_k&=\sum _{k \in \mathcal S^q}u_k\bar{{\bar{x}}}_k-\sum _{k \in \mathcal S^q:~\bar{{\bar{x}}}_k\in (0,1)}u_k\bar{{\bar{x}}}_k \nonumber \\&\ge \sum _{k \in \mathcal S^q}u_k{\bar{x}}_k-\frac{1}{\epsilon }\sum _{r=1}^dP_r\cdot \max _ku_k\bar{{\bar{x}}}_k \nonumber \\&\ge \sum _{k \in \mathcal S^q}u_k\bar{ x}_k-\frac{1}{\epsilon }\frac{\sum _{r=1}^dP_r}{\sum _{r\in \mathcal H^{q}}P_r}\sum _{r\in \mathcal H^{q}}\frac{P_rB^{q,P_r,r}}{H^{q,P_r,r}}, \end{aligned}$$
(59)

where we use in the last inequality that \(\bar{{\bar{x}}}_k\le 1\) and

$$\begin{aligned} u_k&\le \frac{\sum _{r\in \mathcal H^{q}}P_r\sum _{t=1}^{P_r}a_k^{r,t}b^{r,t}(e_{n})/H^{q,P_r,r}}{\sum _{r\in \mathcal H^{q}}P_r}=\frac{\sum _{r\in \mathcal H^{q}}P_rf_k^r(e_n)/H^{q,P_r,r}}{\sum _{r\in \mathcal H^{q}}P_r}\\&\le \frac{\sum _{r\in \mathcal H^{q}}P_rB^{q,P_r,r}/H^{q,P_r,r}}{\sum _{r\in \mathcal H^{q}}P_r}, \end{aligned}$$

for \(k\in \mathcal S^q\). Condition (ii) follows from (58) and (59). \(\square \)

B Proof of Lemma 4

figure d

Proof

The analysis follows the same lines as in Gan et al. (2015), Low (2014b), Huang et al. (2017) and is sketched here for completeness. Let \(F''=(s_0'', x', v'',\ell '',S'')\) be an optimal solution of cOPF\([x']\), which can be found (to within any desired accuracy) in polynomial time, by solving a convex program. Consider the following problem.

$$\begin{aligned} \textsc {(cOPF}'[x']) \quad&\min _{\begin{array}{c} s_0, x, v,\ell , S \;\; \end{array}}\sum _{e\in \mathcal {E} }\ell _e,&\nonumber \\ \text {s.t.} \ {}&(29)-(34), (36), (37)\nonumber&\\&x=x'&\end{aligned}$$
(60)
$$\begin{aligned}&f_{\textsc {OPF}}(s_0, x)\ge f_{\textsc {OPF}}(s_0'',x').&\end{aligned}$$
(61)

Clearly, cOPF \('[x']\) is feasible as \(F''\) satisfies all its constraints. Hence, it has an optimal solution \(F'=(s_0', x', v',\ell ',S')\), which we claim satisfies the statement of the lemma. Suppose, for the sake of contradiction, that there exists an edge (ht) such that \(\ell _{h,t}' > \tfrac{|S_{h,t}'|^2}{v'_h}\). In the sequel, we construct a feasible solution \({\tilde{F}}=({\tilde{s}}_0, x', {\tilde{v}}, {\tilde{\ell }}, \tilde{S})\) for cOPF \('[x']\) such that \(\sum _{e\in \mathcal {E} }{\tilde{\ell }}_e<\sum _{e\in \mathcal {E} }\ell _e'\), leading to a contradiction.

Apply the forward-backward sweep algorithm, illustrated in Alg. 4, on the solution \(F'\) to obtain a feasible solution \({\tilde{F}}\).

We show the feasibility of the solution \({\tilde{F}}\). By Steps 6, 7 and 10 of Alg. 4, all equality constraints of cOPF \('[x']\) are satisfied. By Step 5 and the feasibility of \(F'\), we also have

$$\begin{aligned} {\tilde{\ell }}_e \le \ell _e'\le {\overline{\ell }}_e\text { for all } e \in \mathcal {E} . \end{aligned}$$
(62)

Next, by rewriting \({\tilde{S}}_{i,j}\), recursively substituting from the leaves, we get

$$\begin{aligned} {\tilde{S}}_{i,j}=\sum _{k \in \mathcal N_j} s_k {\tilde{x}}_k + \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}}z_e {\tilde{\ell }}_{e}. \end{aligned}$$
(63)

Write \(\Delta \ell _e \triangleq {\tilde{\ell }}_e - \ell _e'\le 0\), \(\Delta S_e \triangleq {\tilde{S}}_e - S_e'\), and \(\Delta |S_e|^2 \triangleq |{\tilde{S}}_e|^2 - |S_e'|^2\), for \(e\in \mathcal {E} \). Let \({\widehat{S}}_{j} \triangleq \sum _{k \in \mathcal N_j} s_k x_k'\), \(\tilde{L}_{i,j} \triangleq \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}}z_e \tilde{\ell }_e\), and \( L'_{i,j} \triangleq \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}}z_e \ell _e'\). Note by (63) that \(\tilde{S}_{i,j} = {\widehat{S}}_{j} + {\tilde{L}}_{i,j}\) and, similarly, \( S_{i,j} = {\widehat{S}}_{j} + L_{i,j}'\). It follows that, for all \((i,j)\in \mathcal {E} \),

$$\begin{aligned} \Delta S_{i,j}&= {\tilde{L}}_{i,j}-L_{i,j}'=\sum _{e \in \mathcal {E} _j\cup \{(i,j)\}}z_{e} \Delta \ell _{e} \le 0, \end{aligned}$$
(64)

where the inequality follows by assumption A1. In particular, for \((i,j)=(0,1)\), we obtain

$$\begin{aligned} {\tilde{s}}_0^{\textrm{R}}&= -{\tilde{S}}_{0,1}^{\textrm{R}} \ge - S_{0,1}'^{\textrm{R}} = s_0'^{\textrm{R}}, \end{aligned}$$
(65)

implying by A0 that \(f_0({\tilde{s}}_0^{\textrm{R}}) \ge f_0(s_0'^{\textrm{R}})\) and hence (61) is satisfied.

Furthermore,

$$\begin{aligned} \Delta |S_{i,j}|^2&= |{\tilde{S}}_{i,j}|^2 - |S_{i,j}'|^2 \end{aligned}$$
(66)
$$\begin{aligned}&= ({\tilde{S}}_{i,j}^{\textrm{R}})^2 - (S_{i,j}'^{\textrm{R}})^2 +({\tilde{S}}_{i,j}^{\textrm{I}})^2 - (S_{i,j}'^{\textrm{I}})^2 \end{aligned}$$
(67)
$$\begin{aligned}&=\Delta S_{i,j}^{\textrm{R}} ({\tilde{S}}_{i,j}^{\textrm{R}} + S_{i,j}'^{\textrm{R}}) + \Delta S_{i,j}^{\textrm{I}} ({\tilde{S}}_{i,j}^{\textrm{I}} + S_{i,j}'^{\textrm{I}})\end{aligned}$$
(68)
$$\begin{aligned}&=\sum _{e \in \mathcal {E} _j\cup \{(i,j)\}} z_e^{\textrm{R}} \Delta \ell _e \big ( 2 {\widehat{S}}^{\textrm{R}}_{j} + {\tilde{L}}_{i,j}^{\textrm{R}} + L_{i,j}'^{\textrm{R}} \big ) \nonumber \\&\quad + \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}} z_e^{\textrm{I}} \Delta \ell _e \big ( 2 {\widehat{S}}^{\textrm{I}}_{j} + {\tilde{L}}_{i,j}^{\textrm{I}} + L_{i,j}'^{\textrm{I}} \big ) \end{aligned}$$
(69)
$$\begin{aligned}&= \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}} 2\Delta \ell _e \textrm{Re}(z_e^*{\widehat{S}}_j)+ \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}} \Delta \ell _e \textrm{Re}(z_e^*{\tilde{L}}_{i,j})\nonumber \\&\quad +\sum _{e \in \mathcal {E} _j\cup \{(i,j)\}} \Delta \ell _e\textrm{Re}(z_e^*L'_{i,j})\le 0, \end{aligned}$$
(70)

where Eqn. (70) follows by A1, A3 (or A4 \('\)) and \(\Delta \ell _e \le 0\). Therefore, by the feasibility of \(S_e\),

$$\begin{aligned} |\tilde{S}_{e}| \le |S_{e}'| \le {\overline{S}}_{e} \quad \text {for all } e \in \mathcal {E} . \end{aligned}$$
(71)

Note that, by A1, the inequalities in  (71) also imply that the reverse power constraint in (33) is satisfied for \({\tilde{S}}\).

Rewrite Cons. (31) by recursively substituting \(\tilde{v}_j\), for j moving away from the root, and then substituting for \({\tilde{S}}_{h,t}\) using (63):

$$\begin{aligned} {\tilde{v}}_j&= v_0 -2\sum _{ (h,t) \in \mathcal {P}_{j} } \textrm{Re}(z_{h,t}^*{\tilde{S}}_{h,t}) + \sum _{( h,t) \in \mathcal {P}_{j} } |z_{h,t}|^2 {\tilde{\ell }}_{h,t}\nonumber \\&=v_0 -2 \sum _{ (h,t) \in \mathcal {P}_{j} } \textrm{Re}\Big (z^*_{h,t}\big (\sum _{k\in \mathcal N_t} s_k {\tilde{x}}_k + \sum _{e \in \mathcal {E} _t\cup \{(h,t)\}} z_{e} {\tilde{\ell }}_{e} \big )\Big ) + \sum _{ (h,t) \in \mathcal {P}_{j} } |z_{h,t}|^2 {\tilde{\ell }}_{h,t},\nonumber \\&=v_0 -2 \sum _{k \in \mathcal N} \textrm{Re}\Big ( \sum _{(h,t)\in \mathcal {P}_k \cap \mathcal {P}_j} z^*_{h,t} s_k\Big ) {\tilde{x}}_k - 2 \sum _{(h,t)\in \mathcal {P}_j} \textrm{Re}\Big ( z_{h,t}^* \sum _{e \in \mathcal {E} _t} z_{e} {\tilde{\ell }}_{e}\Big ) \nonumber \\&\quad - 2\sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 {\tilde{\ell }}_{h,t} +\sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 {\tilde{\ell }}_{h,t}, \end{aligned}$$
(72)

where the last statement follows from exchanging the summation operators, and \(z^*_{e} z_{e} = |z_{e}|^2\). Thus,

$$\begin{aligned} {\tilde{v}}_j&=v_0 -2 \sum _{k \in \mathcal N} \textrm{Re}\Big ( \sum _{(h,t)\in \mathcal {P}_k \cap \mathcal {P}_j} z^*_{h,t} s_k\Big ) {\tilde{x}}_k \nonumber \\&\quad - \Big (2 \sum _{(h,t)\in \mathcal {P}_j} \textrm{Re}\big ( z_{h,t}^* \sum _{e \in \mathcal {E} _t} z_{e} {\tilde{\ell }}_{e}\big ) + \sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 {\tilde{\ell }}_{h,t}\Big ) \nonumber \\&\le v_0 <{\overline{v}}_j, \end{aligned}$$
(73)

where the first inequality follows by A1 and A3, and the last inequality follows by A2. Since \({\tilde{\ell }}_e \le \ell '_e\) and \({\tilde{x}} = x'\), we get by A1 and the feasibility of \(F'\),

$$\begin{aligned} {\tilde{v}}_j&\ge v_0 -2 \sum _{k \in \mathcal N} \textrm{Re}\Big ( \sum _{(h,t)\in \mathcal {P}_k \cap \mathcal {P}_j} z^*_{h,t} s_k\Big ) x_k' \nonumber \\&\quad - \Big (2 \sum _{(h,t)\in \mathcal {P}_j} \textrm{Re}\big ( z_{h,t} \sum _{e \in \mathcal {E} _t} z_{e} \ell _{e}\big ) + \sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 \ell _{h,t}\Big ) \nonumber \\&=v_j'\ge {\underline{v}}_j. \end{aligned}$$
(74)

By Ineqs. (71) and (74), \({\tilde{\ell }}_{i,j} = \frac{| S_{i,j} '|^2}{v_i'} \ge \frac{| {\tilde{S}}_{i,j} |^2}{{\tilde{v}}_i}\), hence, \({\tilde{F}}\) is feasible.

Finally, by the first inequality in (62) and the fact that \(\ell _{h,t} '> \tfrac{|S_{h,t}|^2}{v_h}={\tilde{\ell }}_{h,t} \), we have \(\sum _{e\in \mathcal {E} }{\tilde{\ell }}_{e}<\sum _{e\in \mathcal {E} } \ell _{e}'\), contradicting the optimality of \(F'\) for cOPF \('[x']\).

C Proof of Lemma 5

Proof

The argument is similar to that in Lemma 4. We apply a slightly modified version of Alg. 4 on the solution \(F'\) to obtain a feasible solution \({\tilde{F}}\). Replace steps 1 and 5 in Alg. 4, respectively, by:

$$\begin{aligned} \text {1: }{\tilde{x}} \leftarrow {\bar{x}}; {\tilde{v}}_0 \leftarrow v_0,\hbox { and 5: }{\tilde{\ell }}_{i,j} \leftarrow \ell '_{i,j}. \end{aligned}$$
(75)

By Steps 6, 7 and 10 of the (modified) algorithm, all equality constraints of (rcOPF \([{\bar{x}}]\)) are satisfied. By (modified) Step 5 and the feasibility of \(F'\), we also have

$$\begin{aligned} {\tilde{\ell }}_e =\ell _e'\le {\overline{\ell }}_e\text { for all }e \in \mathcal {E} . \end{aligned}$$
(76)

Write \(\Delta S_e \triangleq {\tilde{S}}_e - S_e'\), and \(\Delta |S_e|^2 \triangleq |{\tilde{S}}_e|^2 - |S_e'|^2\), for \(e\in \mathcal {E} \). Let \(S_{j}' \triangleq \sum _{k \in \mathcal N_j} s_k x_k'\), \(\tilde{S}_{j}\triangleq \sum _{k \in \mathcal N_j} s_k {\tilde{x}}_k\), and \(\tilde{L}_{i,j} \triangleq \sum _{e \in \mathcal {E} _j\cup \{(i,j)\}}z_e \tilde{\ell }_e\). Note by (63) that \({\tilde{S}}_{i,j} = {\tilde{S}}_{j} + {\tilde{L}}_{i,j}\) and, \( S_{i,j}' = S_{j}' + {\tilde{L}}_{i,j}\). It follows that, for all \((i,j)\in \mathcal {E} \),

$$\begin{aligned} \Delta S_{i,j}&= {\tilde{S}}_{j}-S_{j}'=\sum _{k \in \mathcal N_j} s_k {\bar{x}}_k-\sum _{k \in \mathcal N_j} s_k x_k' \le 0, \end{aligned}$$
(77)

where the inequality follows from (40) and (41). In particular, for \((i,j)=(0,1)\), we obtain

$$\begin{aligned} {\tilde{s}}_0^{\textrm{R}}&= -{\tilde{S}}_{0,1}^{\textrm{R}} \ge - S_{0,1}'^{\textrm{R}} = s_0'^{\textrm{R}}, \end{aligned}$$
(78)

implying by A0 \('\) that \(f_0({\tilde{s}}_0^{\textrm{R}} \cos \phi + {\tilde{s}}_0^{\textrm{I}} \sin \phi ) \ge f_0(s_0'^{\textrm{R}} \cos \phi + s_0'^{\textrm{I}} \sin \phi ))\) and hence \(f_{\textsc {OPF}}(\tilde{s}_0,{\tilde{x}})\ge (1-\varepsilon )f_{\textsc {OPF}}(s_0',x')\) follows from (38) and (42).

Furthermore,

$$\begin{aligned} \Delta |S_{i,j}|^2&= |{\tilde{S}}_{i,j}|^2 - |S_{i,j}'|^2\\&= ({\tilde{S}}_{i,j}^{\textrm{R}})^2 - (S_{i,j}'^{\textrm{R}})^2 +({\tilde{S}}_{i,j}^{\textrm{I}})^2 - (S_{i,j}'^{\textrm{I}})^2 \\&=\Delta S_{i,j}^{\textrm{R}} ({\tilde{S}}_{i,j}^{\textrm{R}} + S_{i,j}'^{\textrm{R}}) + \Delta S_{i,j}^{\textrm{I}} ({\tilde{S}}_{i,j}^{\textrm{I}} + S_{i,j}'^{\textrm{I}})\\&=\Delta S_{i,j}^{\textrm{R}}({\tilde{S}}_j^{\textrm{R}}+S_j'^{\textrm{R}}+2\tilde{L}_{i,j}^{\textrm{R}})+ \Delta S_{i,j}^{\textrm{I}}({\tilde{S}}_j^{\textrm{I}}+S_j'^{\textrm{I}}+2{\tilde{L}}_{i,j}^{\textrm{I}})\le 0, \end{aligned}$$

where the last inequality follows by A1, A4 \('\) and (77). Therefore,

$$\begin{aligned} |\tilde{S}_{i,j}| \le |S'_{i,j}| \le {\overline{S}}_{i,j}. \end{aligned}$$
(79)

Next, we show \({\underline{v}}_j \le {\tilde{v}}_j \le {\overline{v}}_j\). As in (72), rewrite Cons. (31) by recursively substituting \(v_j'\), for j moving away from the root, and then substituting for \({\tilde{S}}_{h,t}\) using (63):

$$\begin{aligned} v_j'&=v_0 -2 \sum _{k \in \mathcal N} \textrm{Re}\Big ( \sum _{(h,t)\in \mathcal {P}_k \cap \mathcal {P}_j} z^*_{h,t} s_k\Big ) x_k' \nonumber \\&\quad - \Big (2 \sum _{(h,t)\in \mathcal {P}_j} \textrm{Re}\big ( z_{h,t}^* \sum _{e \in \mathcal {E} _t} z_{e} \ell '_{e}\big ) + \sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 \ell '_{h,t}\Big ) \end{aligned}$$
(80)

A similar equation can be derived for \({\tilde{v}}_j\), where \(x'\) and \(\ell '\) in (80) are replaced by \({\tilde{x}}\) and \({\tilde{\ell }}\), respectively. By assumptions A2 and A3, we have

$$\begin{aligned} {\tilde{v}}_j&=v_0 -2 \sum _{k \in \mathcal N} \textrm{Re}\Big ( \sum _{(h,t)\in \mathcal {P}_k \cap \mathcal {P}_j} z^*_{h,t} s_k\Big ) {\tilde{x}}_k \nonumber \\&\quad - \Big (2 \sum _{(h,t)\in \mathcal {P}_j} \textrm{Re}\big ( z_{h,t}^* \sum _{e \in \mathcal {E} _t} z_{e} {\tilde{\ell }}_{e}\big ) + \sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 {\tilde{\ell }}_{h,t}\Big ) \nonumber \\&\le v_0 <{\overline{v}}_j. \end{aligned}$$

Moreover, since \({\tilde{\ell }}_e = \ell '_e\) and \({\tilde{x}} = \bar{x}\) satisfies (39), we get by A1 and the feasibility of \(F'\),

$$\begin{aligned} {\tilde{v}}_j&\ge v_0 -2 \sum _{k \in \mathcal N} \textrm{Re}\Big ( \sum _{(h,t)\in \mathcal {P}_k \cap \mathcal {P}_j} z^*_{h,t} s_k\Big ) x_k' \nonumber \\&\quad - \Big (2 \sum _{(h,t)\in \mathcal {P}_j} \textrm{Re}\big ( z_{h,t} \sum _{e \in \mathcal {E} _t} z_{e} \ell _{e}'\big ) + \sum _{ (h,t) \in \mathcal {P}_{j} }|z_{h,t}|^2 \ell _{h,t}'\Big ) \nonumber \\&=v_j'\ge {\underline{v}}_j. \end{aligned}$$
(81)

Finally, by inequalities (79) and (81), \(\tilde{\ell }_{i,j} = \ell _{i,j}' = \frac{|S'_{i,j}|^2}{v'_i} \ge \frac{|{\tilde{S}}_{i,j}|^2}{{\tilde{v}}_i}\), hence \(\tilde{\ell }_{i,j}\) satisfies Cons. (37). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyan, A., Elbassioni, K., Khonji, M. et al. Approximations for generalized unsplittable flow on paths with application to power systems optimization. Ann Oper Res 320, 173–204 (2023). https://doi.org/10.1007/s10479-022-05054-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-05054-y

Keywords

Navigation