Skip to main content

Advertisement

Log in

Vaccine supply decisions and government interventions for recurring epidemics

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

For infectious diseases that occurs recurringly or periodically, e.g., influenza, humans have tried to develop vaccines to effectively prevent infection. However, vaccination coverage, which is the most effective way to prevent infections, is undesirably low. Existing epidemiology studies have consistently shown that there is association between the vaccination decisions in different flu seasons (epidemic periods), but related research in operations management mainly focuses on the single-period model. In this paper we construct a multi-period vaccine demand model to study multi-period vaccine supply decisions and government interventions. We consider that members of the public make vaccination decisions at the beginning of an epidemic period, given the information of the last epidemic period. Both the manufacturer and government make multi-period decisions in our model. The vaccination coverage is determined by the minimum between the supply and demand for the vaccine. We derive the multi-period profit-maximizing coverage and compare it with the socially optimal coverage. In addition, we show that, besides supply uncertainty, vaccine demand may decrease or increase with the vaccination coverage in the last epidemic period, depending on the vaccine effectiveness. Furthermore, the coverage convergence depends on the vaccine effectiveness and infection loss distribution. Accordingly, the multi-period profit-maximizing coverage and government intervention depend on the vaccine effectiveness and coverage convergence. We also conduct numerical studies to generate practical implications of the analytical findings. Our results provide management insights on vaccine supply decisions, government interventions, and vaccination coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adida, E., Dey, D., & Mamani, H. (2013). Operational issues and network effects in vaccine markets. Eur. J. Oper. Res., 231(2), 414–427.

    Article  Google Scholar 

  • AGDH (2018). Influenza vaccine efficacy, effectiveness and impact explained. https://www1.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-ozflu-flucurr.htm.

  • Anderson, R. M., & May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.

  • Arifoğlu, K., Deo, S., & Iravani, S. M. (2012). Consumption externality and yield uncertainty in the influenza vaccine supply chain: Interventions in demand and supply sides. Manage. Sci., 58(6), 1072–1091.

    Article  Google Scholar 

  • Arifoğlu, K., & Tang, C. S. (2021). A two-sided incentive program for coordinating the influenza vaccine supply chain. Manufacturing & Service Operations Management., 24(1), 235–255.

    Article  Google Scholar 

  • Aviv, Y., & Pazgal, A. (2008). Optimal pricing of seasonal products in the presence of forward-looking consumers. Manufacturing & Service Operations Management, 10(3), 339–359.

    Article  Google Scholar 

  • Bauch, C. T., & Earn, D. J. (2004). Vaccination and the theory of games. Proc. Natl. Acad. Sci., 101(36), 13391–13394.

    Article  Google Scholar 

  • Begen, M. A., Pun, H., & Yan, X. (2016). Supply and demand uncertainty reduction efforts and cost comparison. Int. J. Prod. Econ., 180, 125–134.

    Article  Google Scholar 

  • Biomedical New Media Portal (2019). How does the flu vaccine work? Will vaccinations make you catch the flu? https://news.bioon.com/article/6742455.html. Online; accessed October 20, 2020.

  • Blue, L. (2008). Why do not adults get vaccinated? Time, (pp. 1171–1188).

  • Boulier, B.L., Datta, T.S., & Goldfarb, R.S. (2007). Vaccination externalities. The BE Journal of Economic Analysis & Policy, 7(1), 23.

  • Brito, D. L., Sheshinski, E., & Intriligator, M. D. (1991). Externalities and compulsary vaccinations. J. Public Econ., 45(1), 69–90.

    Article  Google Scholar 

  • Bruine de Bruin, W., Parker, A. M., Galesic, M., & Vardavas, R. (2019). Reports of social circles’ and own vaccination behavior: A national longitudinal survey. Health Psychol., 38(11), 975.

    Article  Google Scholar 

  • Cachon, G. P., & Swinney, R. (2009). Purchasing, pricing, and quick response in the presence of strategic consumers. Manage. Sci., 55(3), 497–511.

    Article  Google Scholar 

  • CDC (2018a). Frequently Asked Questions on Vaccine Supply. https://www.cdc.gov/flu/prevent/vaxdistribution.htm. Online; accessed October 20, 2020.

  • CDC (2018b). The flu season. https://www.cdc.gov/flu/about/season/flu-season.htm. Online; accessed October 20, 2020.

  • CDC (2019). Influenza (flu). https://www.cdc.gov/flu/about/index.html. Online; accessed October 20, 2020.

  • Centre for Health Protection (2017). Influenza vaccination. https://www.chp.gov.hk/en/statistics/data/10/280/322.html. Online; accessed October 25 2020.

  • Chapman, G. B., & Coups, E. J. (1999). Predictors of influenza vaccine acceptance among healthy adults. Prev. Med., 29(4), 249–262.

    Article  Google Scholar 

  • Chen, S.-I., Norman, B. A., Rajgopal, J., & Lee, B. Y. (2015). Passive cold devices for vaccine supply chains. Ann. Oper. Res., 230(1), 87–104.

    Article  Google Scholar 

  • Chick, S. E., Mamani, H., & Simchi-Levi, D. (2008). Supply chain coordination and influenza vaccination. Oper. Res., 56(6), 1493–1506.

    Article  Google Scholar 

  • Cho, S.-H. (2010). The optimal composition of influenza vaccines subject to random production yields. Manufacturing & Service Operations Management, 12(2), 256–277.

    Article  Google Scholar 

  • CNBC (2015). The \$1.6 billion business of flu. https://www.cnbc.com/2015/10/19/the-16-billion-business-of-flu.html. Online; accessed October 25 2020.

  • Cook, J., Jeuland, M., Maskery, B., Lauria, D., Sur, D., Clemens, J., & Whittington, D. (2009). Using private demand studies to calculate socially optimal vaccine subsidies in developing countries. Journal Policy Analysis Management: The Journal Association Public Policy Analysis Management, 28(1), 6–28.

    Article  Google Scholar 

  • Dai, T., Cho, S.-H., & Zhang, F. (2016). Contracting for on-time delivery in the us influenza vaccine supply chain. Manufacturing & Service Operations Management, 18(3), 332–346.

    Article  Google Scholar 

  • Dana, J. D., Jr., & Petruzzi, N. C. (2001). Note: The newsvendor model with endogenous demand. Manage. Sci., 47(11), 1488–1497.

    Article  Google Scholar 

  • Danzon, P. M., Pereira, N. S., & Tejwani, S. S. (2005). Vaccine supply: a cross-national perspective. Health Aff., 24(3), 706–717.

    Article  Google Scholar 

  • Dasaklis, T. K., Pappis, C. P., & Rachaniotis, N. P. (2012). Epidemics control and logistics operations: A review. Int. J. Prod. Econ., 139(2), 393–410.

    Article  Google Scholar 

  • Deng, H., Wang, Q., Leong, G. K., & Sun, S. X. (2008). The usage of opportunity cost to maximize performance in revenue management. Decis. Sci., 39(4), 737–758.

    Article  Google Scholar 

  • Deo, S., & Corbett, C. J. (2009). Cournot competition under yield uncertainty: The case of the us influenza vaccine market. Manufacturing & Service Operations Management, 11(4), 563–576.

    Article  Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, (Vol. 5). New York: John Wiley & Sons.

  • Domingo, E. (2020). Long-term virus evolution in nature. Virus as Populations, (p. 225).

  • Duijzer, L. E., van Jaarsveld, W., & Dekker, R. (2018). Literature review: The vaccine supply chain. Eur. J. Oper. Res., 268(1), 174–192.

    Article  Google Scholar 

  • Ernsting, A., Lippke, S., Schwarzer, R., & Schneider, M. (2011). Who participates in seasonal influenza vaccination? past behavior moderates the prediction of adherence. Advances in preventive medicine, 2011.

  • Ferreira, F.A., Kannan, D., Meidutė-Kavaliauskienė, I., & Vale, I.M. (2022). A sociotechnical approach to vaccine manufacturer selection as part of a global immunization strategy against epidemics and pandemics. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04347-y

  • Fine, P., Eames, K., & Heymann, D. L. (2011). herd immunity: A rough guide. Clin. Infect. Dis., 52(7), 911–916.

    Article  Google Scholar 

  • Galvani, A. P., Reluga, T. C., & Chapman, G. B. (2007). Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc. Natl. Acad. Sci., 104(13), 5692–5697.

    Article  Google Scholar 

  • Geoffard, P.-Y., & Philipson, T. (1997). Disease eradication: private versus public vaccination. Am. Econ. Rev., 87(1), 222–230.

    Google Scholar 

  • Gidengil, C. A., Parker, A. M., & Zikmund-Fisher, B. J. (2012). Trends in risk perceptions and vaccination intentions: a longitudinal study of the first year of the h1n1 pandemic. Am. J. Public Health, 102(4), 672–679.

    Article  Google Scholar 

  • Gordis, L. (2013). Epidemiology (4th ed.). Philadelphia: Elsevier.

    Google Scholar 

  • GovHK (2020). Influenza vaccination. https://www.elderly.gov.hk/english/common_health_problems/infections/influenza_vaccination.html. Online; accessed October 20, 2020.

  • Herlin, H., & Pazirandeh, A. (2012). Nonprofit organizations shaping the market of supplies. Int. J. Prod. Econ., 139(2), 411–421.

    Article  Google Scholar 

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42(4), 599–653.

    Article  Google Scholar 

  • Hong Kong Government News (2020). The 2020/21 quarter "Vaccine Subsidy Scheme" starts this Thursday. https://www.info.gov.hk/gia/general/202010/05/P2020100500384.htm?fontSize=1. Online; accessed January 29 2021.

  • Kumar, A., Choi, T.-M., Wamba, S.F., Gupta, S., & Tan, K.H. (2021a). Infection vulnerability stratification risk modelling of covid-19 data: a deterministic seir epidemic model analysis. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04091-3

  • Kumar, S., Xu, C., Ghildayal, N., Chandra, C., & Yang, M. (2021b). Social media effectiveness as a humanitarian response to mitigate influenza epidemic and covid-19 pandemic. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03955-y

  • Kung, Y. M. (2013). Factors associated with health care personnel influenza vaccination behavior. The Journal Nurse Practitioners, 9(2), 87–92.

    Article  Google Scholar 

  • Lin, Q., Zhao, Q., & Lev, B. (2020). Cold chain transportation decision in the vaccine supply chain. Eur. J. Oper. Res., 283(1), 182–195.

    Article  Google Scholar 

  • Longini, I. M., Jr., Datta, S., & Halloran, M. E. (1996). Measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic hiv-1 vaccines. JAIDS Journal of Acquired Immune Deficiency Syndromes, 13(5), 440–447.

    Article  Google Scholar 

  • MacDonald, N. E., et al. (2015). Vaccine hesitancy: Definition, scope and determinants. Vaccine, 33(34), 4161–4164.

    Article  Google Scholar 

  • Mamani, H., Adida, E., & Dey, D. (2012). Vaccine market coordination using subsidy. IIE Transactions Healthcare Systems Engineering, 2(1), 78–96.

    Article  Google Scholar 

  • Mamani, H., Chick, S. E., & Simchi-Levi, D. (2013). A game-theoretic model of international influenza vaccination coordination. Manage. Sci., 59(7), 1650–1670.

    Article  Google Scholar 

  • Merrill, R. M. (2015). Introduction to Epidemiology. Massachusetts: Jones & Bartlett Publishers.

  • Murray, J. D. (1993). Mathematical biology. Berlin: Springer-Verlag.

  • Palese, P. (2006). Making better influenza virus vaccines? Emerg. Infect. Dis., 12(1), 61.

    Article  Google Scholar 

  • Pan, Y., Ng, C. T., & Cheng, T. C. E. (2021). Effect of free-riding behavior on vaccination coverage with customer regret. Computers & Industrial Engineering, 159, 107494.

    Article  Google Scholar 

  • Pan, Y., Ng, C.T., Dong, C., Cheng, T. (2022). Information sharing and coordination in a vaccine supply chain. Annals Operations Research. https://doi.org/10.1007/s10479-022-04562-1

  • Philipson, T. (2000). Economic epidemiology and infectious diseases. Handb. Health Econ., 1, 1761–1799.

    Article  Google Scholar 

  • Reluga, T. C., Bauch, C. T., & Galvani, A. P. (2006). Evolving public perceptions and stability in vaccine uptake. Math. Biosci., 204(2), 185–198.

    Article  Google Scholar 

  • Su, X., & Zhang, F. (2008). Strategic customer behavior, commitment, and supply chain performance. Manage. Sci., 54(10), 1759–1773.

    Article  Google Scholar 

  • Tereyağoğlu, N., & Veeraraghavan, S. (2012). Selling to conspicuous consumers: Pricing, production, and sourcing decisions. Manage. Sci., 58(12), 2168–2189.

    Article  Google Scholar 

  • van Boven, M., Ruijs, W. L., Wallinga, J., O’Neill, P. D., & Hahne, S. (2013). Estimation of vaccine efficacy and critical vaccination coverage in partially observed outbreaks. PLoS Comput. Biol., 9(5), e1003061.

    Article  Google Scholar 

  • Vietri, J. T., Li, M., Ibuka, Y., Chapman, G., & Galvani, A. (2008). Self-interest and altruism in a group vaccination game. Technical report, Working paper. New Brunswick, NJ: Rutgers University.

    Google Scholar 

  • Walsh, M. M., Parker, A. M., Vardavas, R., Nowak, S. A., Kennedy, D. P., & Gidengil, C. A. (2020). The stability of influenza vaccination behavior over time: A longitudinal analysis of individuals across 8 years. Ann. Behav. Med., 54(10), 783–793.

    Article  Google Scholar 

  • Weycker, D., Edelsberg, J., Halloran, M. E., Longini, I. M., Jr., Nizam, A., Ciuryla, V., & Oster, G. (2005). Population-wide benefits of routine vaccination of children against influenza. Vaccine, 23(10), 1284–1293.

    Article  Google Scholar 

  • WHO (2020). Recurring epidemics in the WHO African Region: Situation analysis preparedness and response. https://apps.who.int/iris/handle/10665/1681. Online; accessed October 20, 2021.

  • Wikipedia (2018). Basic Reproduction Number. https://en.wikipedia.org/wiki/Basic_reproduction_number.

  • Wood, W., & Rünger, D. (2016). Psychology of habit. Annu. Rev. Psychol., 67, 289–314.

    Article  Google Scholar 

  • Wu, J. T., Wein, L. M., & Perelson, A. S. (2005). Optimization of influenza vaccine selection. Oper. Res., 53(3), 456–476.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Research Grants Council of Hong Kong under grant number PolyU 155033/19B, and the National Natural Science Foundation of China under Grant Numbers 71971215 and 71601187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciwei Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

\(u_{t+1}^{m}(f_t, \phi _{t})=\frac{w}{P(f_t,\phi _{t} )-H(f_t,\phi _{t} )}=\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )}\);

\(d_{t+1}(f_t, \phi _{t})=(1-\alpha -\beta )\bar{G}(u_{t+1}^{m})+\alpha =(1-\alpha -\beta )\bar{G}(\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )})+\alpha \). \(\square \)

Proof of Proposition 1

\(H(f_t, \phi _{t})=\eta (1-\phi _{t}) (1-\phi _{t} f_t-\frac{1}{R_0}) \), \(\frac{\partial H(f_t, \phi _{t})}{\partial \phi _{t}}=\eta (-(1-\phi _{t} f_t-\frac{1}{R_0})-f_t(1-\phi _{t})) \le 0\), \(\frac{\partial ^2 H(f_t, \phi _{t})}{\partial \phi _{t}^2}=2\eta f_t \ge 0\).

\(P(f_t, \phi _{t})=\frac{r(f_t, \phi _{t})-f_t H(f_t, \phi _{t})}{1-f_t}\), \(\frac{\partial P(f_t, \phi _{t})}{\partial \phi _{t}}= \frac{f_t(\eta -1-\frac{\eta }{R_0}+\eta f_t(1-2\phi _{t}))}{1-f_t}\), \(\frac{\partial ^2 P(f_t, \phi _{t})}{\partial \phi _t^2}=\frac{-2\eta f_t^2}{1-f_t} \le 0\).

\(\frac{\partial ^2 (P(f_t, \phi _{t})-H(f_t, \phi _{t}))}{\partial \phi _{t}^2}=\frac{-2\eta f_t^2}{1-f_t}-2\eta f_t \le 0\). When \(\phi _{t}\le \frac{1-R_0}{2 f_t R_0}+\frac{1-\eta }{2\eta }\), \(\frac{\partial (P(f_t, \phi _{t})-H(f_t, \phi _{t}))}{\partial \phi _{t} } \le 0\). For any disease, \(R_0 \ge 0\). According to the estimation of \(\eta \) in Mamani et al. (2012), \(\eta \ge 1\). So, for \(\phi \) in [0, 1], \(\frac{\partial (P(f_t, \phi _{t})-H(f_t, \phi _{t}))}{\partial \phi _{t} } \le 0\). \(\square \)

Proof of Proposition 2

\(\frac{\partial (d_{t+1})}{\partial (f_t)}= [(r(f_t,\phi _{t} )-H(f_t,\phi _{t} ))+\)

\((1-f_t)(\frac{\partial r(f_t,\phi _{t} )}{\partial f_t}-\frac{\partial H(f_t,\phi _{t} )}{\partial f_t})] \frac{-w(1-\alpha -\beta )}{(r(f_t,\phi _{t} )-H(f_t,\phi _{t} ))^2} \frac{-dG(u^m_t)}{du^m_t} \!=\!\frac{-w(1-\alpha -\beta )(\phi _{t}+\frac{1}{R_0}-1)}{(1-\eta (1-\phi _{t}))(1-\phi _{t} f_t-\frac{1}{R_0})^2} \frac{dG(u^m_t)}{du^m_t}\);

\(\frac{\partial ^2(d_{t+1})}{\partial f_t^2}=-g(\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )})[\frac{-2w(1-\alpha -\beta )\phi _{t}(\phi _{t}+\frac{1}{R_0}-1)}{(1-\eta (1-\phi _{t}))(1-\phi _{t} f_t-\frac{1}{R_0})^3}]-\)

\(g^{'} (\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )})\frac{w(1-\alpha -\beta )(\phi _{t}+\frac{1}{R_0}-1)}{(1-\eta (1-\phi _{t}))(1-\phi _{t} f_t-\frac{1}{R_0})^2}\).

\(\frac{\partial ^2(d_{t+1})}{\partial f_t^2}\!=\!\frac{-w(1-\alpha -\beta )(\phi _{t}+\frac{1}{R_0}-1)}{(1-\eta (1-\phi _{t}))(1-\phi _{t} f_t-\frac{1}{R_0})^2}(g(\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )})\frac{2\phi _{t}}{(1-\phi _{t} f_t-\frac{1}{R_0})}\!+\!g^{\prime } (\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )}))\).

Set \(J(f_t, \phi _{t} )=\frac{w(1-f_t)}{r(f_t,\phi _{t})-H(f_t,\phi _{t})}\).

When \(\phi _{t}>1-\frac{1}{R_0}\), \((\phi _{t}+\frac{1}{R_0}-1)>0\). The sufficient condition for \(\frac{\partial ^2(d_{t+1})}{\partial f_t^2}< 0\) is that \(\frac{2 \phi _{t} g(J(f_t, \phi _{t} ))}{1-\phi _{t} f_t-\frac{1}{R_0}}+g'(J(f_t, \phi _{t}))> 0\). It is easy to prove that \(\frac{2 \phi _{t} g(J(f_t, \phi _{t} ))}{1-\phi _{t} f_t-\frac{1}{R_0}}+g'(J(f_t, \phi _{t}))> 0\) for a uniform distribution g(.). On the other hand, if g(.) is a normal distribution, for \(R_0=3\) (approximate value for influenza), \(0\le w\le 1\), \(\phi _{t}>1-\frac{1}{R_0}\), and \(0\le f_t \le 1-\frac{1}{R_0}\), and we can get \(\frac{2 \phi _{t} g(J(f_t, \phi _{t} ))}{1-\phi _{t} f_t-\frac{1}{R_0}}+g'(J(f_t, \phi _{t}))> 0\). So \(\frac{\partial ^2(d_{t+1})}{\partial f_t^2}< 0\) for \(\phi _{t}>1-\frac{1}{R_0}\).

(1)\(\phi _{t}>1-\frac{1}{R_0}\), \(\frac{\partial d_{t+1}(f_t, \phi _{t})}{\partial f_t }<0\), \(d_{t+1}(f_t, \phi _{t})\) is a strictly concave decreasing function of \(f_t\).

(2)\(\phi _{t}<1-\frac{1}{R_0}\), \(\frac{\partial d_{t+1}(f_t, \phi _{t})}{\partial f_t }>0\), \(d_{t+1}(f_t, \phi _{t})\) is an increasing function of \(f_t\).

(3)\(\phi _{t}=1-\frac{1}{R_0}\), \(\frac{\partial d_{t+1}(f_t, \phi _{t})}{\partial f_t }=0\), \(d_{t+1}(f_t, \phi _{t})\) is a constant function of \(f_t\). \(\square \)

Proof of Lemma 2

When the vaccine effectiveness satisfies \(\phi _{t+1}>1-\frac{1}{R_0}\), for \(f_t<\alpha \), \(d_{t+1}(f_t, \phi _{t})=1-\beta \). Then \(d_{t+1}(1-\beta , \phi _{t})=\alpha \). And the coverage would never be outside \([\alpha , 1-\beta ]\). Besides, when \(1-\beta >f_{cf}\), \(r(1-\beta ,\phi _{t} )=H(1-\beta ,\phi _{t} )=P(1-\beta ,\phi _{t} )=r(f_{cf},\phi _{t+1} )=H(f_{cf},\phi _{t} )=P(f_{cf},\phi _{t} )=0\). At this time, \(d_{t+1}(1-\beta , \phi _{t})=d_{t+1}(f_{cf}, \phi _{t})\). It contradicts Proposition 2 (1). \(\square \)

Proof of Lemma 3

For \(\phi _{t}>1-\frac{1}{R_0}\), \(d_{t+1}(f_0, \phi _{t})\) is a decreasing function in \([\alpha , 1-\beta ]\). There are \(d_{t+1}(\alpha , \phi _{t})-\alpha \ge 0\) and \(d_{t+1}(1-\beta , \phi _{t})-(1-\beta ) \le 0\). So there must exist an \(f_0\) satisfying \(d_{t+1}(f_0, \phi _{t})=f_0\). \(\square \)

Proof of Proposition 3

\(\frac{\partial B}{\partial f_t}=-g(J(f_t, \phi _{t} ))[\frac{w(1-\alpha -\beta )(\phi _{t}+\frac{1}{R_0}-1)}{(1-\eta (1-\phi _{t}))(1-\phi _{t} f_t-\frac{1}{R_0})^2}]+k_t\);

\(\frac{\partial ^2B}{\partial f_t^2}=\frac{\partial ^2(d_{t+1})}{\partial f_t^2}=\frac{-w(1-\alpha -\beta )(\phi _{t}+\frac{1}{R_0}-1)}{(1-\eta (1-\phi _{t}))(1-\phi _{t} f_t-\frac{1}{R_0})^2}(g(\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )})\frac{2\phi _{t}}{(1-\phi _{t} f_t-\frac{1}{R_0})}\) \(\qquad \qquad +g^{\prime } (\frac{w(1-f_t)}{r(f_t,\phi _{t} )-H(f_t,\phi _{t} )}))\).

(1) \(\phi _{t}>1-\frac{1}{R_0}\). By the Proof of Proposition 2, when \(\frac{2 \phi _{t} g(J(f_t, \phi _{t} ))}{1-\phi _{t} f_t-\frac{1}{R_0}}+g'(J(f_t, \phi _{t} ))\ge 0\), where \(J(f_t, \phi _{t} )=\frac{w(1-f_t)}{r(f_t)-H(f_t)}\), \(\frac{\partial ^2B}{\partial f_t^2}\le 0 \). Then it is easy to get the results.

(2) \(\phi _{t}<1-\frac{1}{R_0}\). \(k_t>0\), \(\frac{\partial B}{\partial f_t}>0\), \(f_{2P}^{M*}=1-\beta \). \(\square \)

Proof of Lemma 4

As shown in the Proof of Proposition 8, \(J (J(f_t,\phi _t ), \phi _{t+1} ) < f_t\) for \(f_t>f_0\) and \(J (J(f_t,\phi _t ), \phi _{t+1} )> f_t\) for \(f_t<f_0\). For a \(f_t<f_0\), \(f_t+f_{t-1}>f_t+f_{t+1}\); for a \(f_t>f_0\), \(f_t+f_{t+1}>f_t+f_{t-1}\). Therefore, \(f_{VI}>f_0\). \(\square \)

Proof of Proposition 4

When \(\phi _{t}>1-\frac{1}{R_0}\), for \(f_t\le f_{IV}\), \(\frac{\partial B}{\partial f_t}\ge 0\); when \(\phi _{t}<1-\frac{1}{R_0}\), for all \(f_t\in [0,1]\), \(\frac{\partial B}{\partial f_t}\ge 0\). For both \(\phi _{t}>1-\frac{1}{R_0}\) and \(\phi _{t}<1-\frac{1}{R_0}\), \(\frac{\partial B}{\partial f_t}\) is an increasing function of \(f_t\) in \([0, f_{IV}]\).

Proof of Lemma 5

By Lemma 2 and Proposition 3, when \(\phi _{t}>1-\frac{1}{R_0}\), \(B(\alpha , \phi _{t})=B(1-\beta , \phi _{t})\) and both are the minimum value for \(f_t\in [\alpha , 1-\beta ]\). When \(\phi _{t}<1-\frac{1}{R_0}\), \(B(1-\beta , \phi _{t})\) is the maximum for \(f_t\in [\alpha , 1-\beta ]\). So if \((w_a-\frac{c_a}{Y_a})(1+\alpha -\beta ) \ge 2(w_b-\frac{c_b}{Y_b})(1-\beta )\), \((w_a-\frac{c_a}{Y_a}) B(f_{t}, \phi _{t})\mid _{\phi _{t}>1-\frac{1}{R_0}}\ge (w_b-\frac{c_b}{Y_b})(1-\beta )B(f_{t}, \phi _{t})\mid _{\phi _{t}<1-\frac{1}{R_0}}\) for \(f_t\in [\alpha , 1-\beta ]\). If \((w_a-\frac{c_a}{Y_a})(1+\alpha -\beta ) < 2(w_b-\frac{c_b}{Y_b})(1-\beta )\), there exists an \(f_I\) satisfying \(\pi _a(f_I,\phi _t)=\pi _b(f_I,\phi _t)\). \(\square \)

Proof of Proposition 5

\(u_t\) and \(f_t\) are for the same period, so \(u_t (P(f_t,\phi _t )-H(f_t,\phi _t ))=w\) and \(G (u_{t} ) =1-f_{t}\).

\( \int _{u_{t}}^{1} v d G(v) =v G(v)|_{u_{t}} ^{1}-\int _{u_{t}}^{1} G(v) d v =1-u_{t} G (u_{t} )-\int _{u_{t}}^{1} G(v) d v \).

\( \int _{0}^{u_{t}} v d G(v) =v G(v)|_{0}^{u_{t}}-\int _{0}^{u_{t}} G(v) d v =u_{t} G(u_{t})-\int _{0}^{u_{t}} G(v) d v \).

\(\frac{\partial \int _{u_{t}}^{1} v d G(v)}{\partial f_{t}}=-\frac{\partial u_{t}}{\partial f_{t}} G\left( u_{t}\right) +u_{t}+G(u_{t}) \frac{\partial u_{t}}{\partial f_{t}}=u_{t}\), and \(\frac{\partial \int _{0}^{u_{t}} v d G(v)}{\partial f_{t}}=-u_{t}\).

\(\frac{\partial TC}{\partial f_t}=m[\frac{\partial H(f_t,\phi _t )}{\partial f_t}\int ^1_{u_t}vdG(v)+H(f_t,\phi _t )u_t+\frac{\partial P(f_t,\phi _t )}{\partial f_t}\int _0^{u_t}vdG(v)-P(f_t,\phi _t )u_t]+(m-1)w+\frac{c}{Y_t}=m[\frac{\partial H(f_t,\phi _t )}{\partial f_t}\int ^1_{u_t}vdG(v)+\frac{\partial P(f_t,\phi _t )}{\partial f_t}\int _0^{u_t}vdG(v)]-w+\frac{c}{Y_t}\).

It is easy to get \(\frac{\partial H(f_t,\phi _t )}{\partial f_t}\le 0\), \(\frac{\partial P(f_t,\phi _t )}{\partial f_t}\le 0\), and \(-w+\frac{c}{Y_t}<0\). So \(\frac{\partial TC}{\partial f_t}\le 0\).

\(\frac{\partial \left( P\left( f, \phi _{t}\right) -H\left( f_{t}, \phi _{t}\right) \right) }{\partial f_{t}}=\frac{\left( 1-\eta \left( 1-\phi _{t}\right) \right) \left[ \left( -\phi _{t}\right) \left( 1-f_{t}\right) +1-\phi _{t} f_{t}-\frac{1}{R_{0}}\right] }{\left( 1-f_{t}\right) ^{2}} =\frac{\left( 1-\eta \left( 1-\phi _{t}\right) \right) \left( 1-\frac{1}{R_{0}}-\phi _{t}\right) }{\left( 1-f_{t}\right) ^{2}}\).

\( \frac{\partial ^{2} P\left( f_{t}, \phi _{t}\right) }{\partial f_{t}^{2}}=\frac{\partial ^{2}\left( P\left( f_{t}, \phi _{t}\right) -H\left( f_{t}, \phi _{t}\right) \right) }{\partial f_{t}^{2}} =\frac{4\left( 1-\eta \left( 1-\phi _{t}\right) \right) \left( 1-\frac{1}{R_{0}}-\phi _{t}\right) }{\left( 1-f_{t}\right) ^{2}}\).

\(\frac{\partial ^{2} T C_{1 P}}{\partial f_{t}^{2}}=m [\frac{\partial ^{2} H (f_{t}, \phi _{t} )}{\partial f_{t}^{2}} \int _{u_{t}}^{1} v d G(v)+\frac{\partial ^{2} P (f_{t}, \phi _{t} )}{\partial f_{t}^{2}} \int _{0}^{u_{t}} v d G(v) +\frac{\partial H (f_{t}, \phi _{t} )}{\partial f_{t}}{u_{t}}-\frac{\partial P (f_{t}, \phi _{t} )}{\partial f_{t}}{u_{t}} ]\)

\(=m \frac{(1-\eta (1-\phi _t)) (1-\frac{1}{R_{0}}-\phi _{t} )}{\left( 1-f_{t}\right) ^{2}} (4 \int _{0}^{u_{t}} v d G(v) -1 )\).

Therefore, for \(\phi _{t}>1-\frac{1}{R_0}\), when \(\int _{0}^{u_{t}} v d G(v) \ge \frac{1}{4}\), TC is concave decreasing function of \(f_t\). When \(\int _{0}^{u_{t}} v d G(v) <\frac{1}{4}\), TC is convex decreasing function of \(f_t\).

For \(\phi _{t}<1-\frac{1}{R_0}\), when \(\int _{0}^{u_{t}} v d G(v) \ge \frac{1}{4}\), TC is convex decreasing function of \(f_t\). When \(\int _{0}^{u_{t}} v d G(v) <\frac{1}{4}\), TC is concave decreasing function of \(f_t\). \(\square \)

Proof of Lemma 6

\(CC^*_{1P}=((m-1) w_{a} +\frac{c_{a}}{Y_{a}}) \frac{R_{0}-1}{\phi R_{0}}-(m-1) w_{b}-\frac{c_{b}}{Y_{b}}-m r\left( 1, \phi _{t}\right) \int _{0}^{1} v d G(v)\).

\(\frac{\partial CC^*_{1P}}{\partial R_0}=(((m-1) w_{a} +\frac{c_{a}}{Y_{a}}) \frac{1}{\phi } - m \int _{0}^{1} v d G(v))\frac{1}{R_0^2} \).

\(\frac{\partial ^2 CC^*_{1P}}{\partial R_0^2}=-2 (((m-1) w_{a} +\frac{c_{a}}{Y_{a}}) \frac{1}{\phi } - m \int _{0}^{1} v d G(v))\frac{1}{R_0^3} \).

If \(((m-1) w_{a} +\frac{c_{a}}{Y_{a}}) \frac{1}{\phi } - m \int _{0}^{1} v d G(v)>0\), \(CC^*_{1P}\) is a concave increasing function of \(R_0\).

If \(((m-1) w_{a} +\frac{c_{a}}{Y_{a}}) \frac{1}{\phi } - m \int _{0}^{1} v d G(v)<0\), \(CC^*_{1P}\) is a convex decreasing function of \(R_0\)\(\square \)

Proof of Proposition 7

Set \(f_{III}\) as the coverage achieving the minimum total subsidy. We use the contradiction to show that \(f_{III}< f^{M*}_{2P}\).

If \(f_{III}\ge f^{M*}_{2P}\), \(TS_{2P}(f_{2P}^{T})\mid _{d_t}=S_M (f_{2P}^{T} - f^{M*}_{2P}) + S_C (f_{2P}^{T}-d_t)+ S_M (f_{2P}^{T} - f^{M*}_{2P})+ S_C (f_{2P}^{T}-d_{t+1}(f_{2P}^{T}))\). \(\frac{\partial TS_{2P}(f_{2P}^{T})}{\partial f_{2P}^{T}}= 2(S_M+S_C)- 2S_C\frac{\partial d_{t+1}(f_{2P}^{T})}{\partial f_{2P}^{T}}\), and \(\frac{\partial ^2 TS_{2P}(f_{2P}^{T})}{\partial (f_{2P}^{T})^2}= - 2 S_C \frac{\partial ^2 d_{t+1}(f_{2P}^{T})}{\partial (f_{2P}^{T})^2} \ge 0\). So \(f_{III}\) satisfies \(\frac{\partial d_{t+1}(f_{t})}{\partial f_{t}}=1+\frac{S_M}{S_C}\). And \(f_{VI}\) satisfies \(1+ \frac{\partial d_{t+1}(f_{t})}{\partial f_{t}}=0\). Since \(\frac{\partial ^2 d_{t+1}(f_{t})}{\partial (f_{t})^2}\le 0\), \(\frac{\partial d_{t+1}(f_{t})}{\partial f_{t}}\) is a decreasing function of \(f_t\). So \(f_{III}< f^{M*}_{2P}\). It contradict with the assumption.

If \(f_{III}< f^{M*}_{2P}\), \(TS_{2P}(f_{2P}^{T})\mid _{d_t}=S_C (f_{2P}^{T}-d_t) + S_C (f_{2P}^{T}-d_{t+1}(f_{2P}^{T}))\). \(\frac{\partial TS_{2P}(f_{2P}^{T})}{\partial f_{2P}^{T}}= S_C (2- \frac{\partial d_{t+1}(f_{2P}^{T})}{\partial f_{2P}^{T}})\), \(\frac{\partial ^2 TS_{2P}(f_{2P}^{T})}{\partial (f_{2P}^{T})^2}= - S_C \frac{\partial ^2 d_{t+1}(f_{2P}^{T})}{\partial (f_{2P}^{T})^2} \ge 0\). So \(f_{III}\) satisfies \(2- \frac{\partial d_{t+1}(f_{t})}{\partial f_{t}}=0\). And \(f_{VI}\) satisfies \(1+ \frac{\partial d_{t+1}(f_{t})}{\partial f_{t}}=0\). Since \(\frac{\partial ^2 d_{t+1}(f_{t})}{\partial (f_{t})^2}\le 0\), \(\frac{\partial d_{t+1}(f_{t})}{\partial f_{t}}\) is a decreasing function of \(f_t\). So \(f_{III}< f^{M*}_{2P}\). \(\square \)

Proof of Proposition 8

(1) Considering \(f_t>f_0\), following that \(d_{t+1}(f_t, \phi _{t})\) is a strictly concave decreasing function of \(f_t\), we get

\(\left\{ \begin{array}{l}f_{t}-f_{0}>f_{0}-f_{t+1} \\ f_{0}-f_{t+1}>f_{t+2}-f_{0}\end{array}\right. \).

So we get \(J (J(f_t,\phi _t ), \phi _{t+1} ) < f_t\) for \(f_t>f_0\), and it is similar to get \(J (J(f_t,\phi _t ), \phi _{t+1} )> f_t\) for \(f_t<f_0\). Therefore, the coverage converges to \(f_0\).

(2) a. It means \(d_{t+1}<f_t\). b. It means \(d_{t+1}>f_t\). c. It means \(d_{t+1}=f_t\). \(\square \)

Proof of Proposition 9

\(\frac{\partial \pi _{MP}}{\partial f_t}=\frac{1}{e}[\frac{\partial (f_t+f_{t+1})}{\partial f_t}+\frac{\partial (f_{t+2}+f_{t+3})}{\partial f_{t+2}}\frac{\partial f_{t+2}}{\partial f_{t+1}}\frac{\partial f_{t+1}}{\partial f_{t}}+\ldots ]\).

(1) Regarding Proposition 3, we get \(\frac{\partial ^2B}{\partial f_t^2}\le 0 \). Besides, \(\frac{\partial f_{t+2}}{\partial f_{t+1}}\le 0\) and \(\frac{\partial f_{t+1}}{\partial f_{t}}\le 0\). a. We first consider the situation where \(f_{t+2} < f_t\) for \(f_t>f_0\) or \(f_{t+2}> f_t\) for \(f_t<f_0\). If \(f_0 > f_{VI}\), for all \(f_t>f_{VI}\), we have \(f_{t+2}>f_{VI}\), \(f_{t+4}>f_{VI}\), ...By Proposition 3, we can get \(f^{M*}_{MP}<f_{VI}\). If \(f_0 < f_{VI}\), for all \(f_t<f_{VI}\), we will have \(f_{t+2}<f_{VI}\), \(f_{t+4}<f_{VI}\), ...By Proposition 3, we get \(f^{M*}_{MP}>f_{VI}\). b. The situation where \(f_{t+2}>f_t\) for \(f_t>f_0\) or \(f_{t+2}<f_t\) for \(f_t<f_0\) is as follows. For all \(f_t>max\{f_0, f_{VI}\}\), we have \(f_{t+2}>max\{f_0, f_{VI}\}\), \(f_{t+4}>max\{f_0, f_{VI}\}\), ...For all \(f_t<min\{f_0, f_{VI}\}\), we have \(f_{t+2}<min\{f_0, f_{VI}\}\), \(f_{t+4}<min\{f_0, f_{VI}\}\), ...By Proposition 3, we get \(f^{M*}_{MP}\) in the interval \([f_0, f_{VI}]\).

(2) When \(\phi _{t+1}<1-\frac{1}{R_0}\), \(\frac{\partial B}{\partial f_t}>0\) and \(\frac{\partial f_{t+1}}{\partial f_{t}}\le 0\) for all \(f_t\). So \(\frac{\partial \pi _{MP}}{\partial f_t} \ge 0\). \(\square \)

Proof of Proposition 10

By Lemma 4, for a given \(d_t\), the optimal production is \(min\{f_{2P}^{M*}, d_t\}\). So for \(d_t\ge f_{2P}^{M*}\), \(f_t=f_{2P}^{M*}\); otherwise, \(f_t=d_t\).

By Proposition 9, (1) When \(\phi _{i}>1-\frac{1}{R_0}\) for \(i=t, t+1, \ldots , M\), \(J (J(f_t,\phi _t ), \phi _{t+1} ) < f_t\) for \(f_t>f_0\) and \(J (J(f_t,\phi _t ), \phi _{t+1} ) > f_t\) for \(f_t<f_0\). \(f_{2P}^{M*} > f_0 \). If \(f_t=f_{2P}^{M*}\), we get \(f_{t+2}<f_{2P}^{M*}\), \(f_{t+4}<f_{t+2}<f_{2P}^{M*}\), ...By Proposition 3, \(B(f_t)< B(f_{t+2})<B(f_{t+4})\ldots \). So \(\frac{2 }{M} B_{MP}\) decreases with M. (2) When \(\phi _t, \phi _{t+1}, \ldots , \phi _{M}<1-\frac{1}{R_0}\), the profit-maximizing coverage is \(1-\beta \) in every period. \(\square \)

Proof of Proposition 11

If \(f_{VII}>f^{M*}_{2P}\), \(\frac{\partial TS_{MP}}{\partial f_{MP}^{T}}=(S_M+S_C)-S_C \frac{\partial d_{t+1}}{\partial f_{MP}^{T}}\), \(\frac{\partial ^2 TS_{MP}}{\partial (f_{MP}^{T})^2}=- S_C \frac{\partial ^2 d_{t+1}}{\partial (f_{MP}^{T})^2}\ge 0\). Set \(f_{VII}\) satisfying \(\frac{\partial d_{t+1}}{\partial f_{MP}^{T}}=\frac{S_M+S_C}{S_C}\). We get \(f_{VII}<f^{M*}_{2P}\), which contradicts with the assumption.

Then considering \(f_{VII}<f^{M*}_{2P}\), \(\frac{\partial TS_{MP}}{\partial f_{MP}^{T}}=(S_M+S_C)(1- \frac{\partial d_{t+1}}{\partial f_{MP}^{T}})\), \(\frac{\partial ^2 TS_{MP}}{\partial (f_{MP}^{T})^2}=- (S_M+S_C)\frac{\partial ^2 d_{t+1}}{\partial (f_{MP}^{T})^2}\ge 0\), we set \(f_{VII}\) satisfying \(1-\frac{\partial d_{t+1}}{\partial f_{VII}}=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Ng, C.T., Dong, C. et al. Vaccine supply decisions and government interventions for recurring epidemics. Ann Oper Res (2022). https://doi.org/10.1007/s10479-022-04809-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-022-04809-x

Keywords

Navigation