Skip to main content
Log in

Periodic replacement policies with shortage and excess costs

  • S.I.: Reliability Modeling with Applications Based on Big Data
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

It has been proposed that if replacement time is planned too early prior to failure, a waste of operation cost, i.e., excess costs, would incur because the system might run for an additional period of time to complete critical operations, and if replacement time is too late after failure, a great failure cost, i.e., shortage cost, is incurred due to the delay in time of the carelessly scheduled replacement. In order to make the preventive replacement policies perform in a more general way, the above two variable types of costs are taken into considerations for periodic replacement policies in this paper. We firstly take up a standard model in which the unit is replaced preventively at periodic times. Secondly, the modeling approaches of whichever occurs first and last are applied into periodic and random models, and replacement first and last policies are discussed to find optimum periodic replacement times for a random working time. Furthermore, optimum working numbers are obtained for the extended models. We give analytical discussions of the above replacement policies, and finally, numerical examples are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arts, J. (2018). Design of multi-component periodic maintenance programs with single-component models. IISE Transactions, 50(606–615), 2018.

    Google Scholar 

  • Barlow, R. E., & Proschan, F. (1965). Mathematical theory of reliability. Hoboken: Wiley.

    Google Scholar 

  • Chang, C. C., & Chen, Y. L. (2019). Optimization of continuous and discrete scheduled times for a cumulative damage system with age-dependent maintenance. Communications in Statistics: Theory and Methods, 48, 4261–4277.

    Article  Google Scholar 

  • Chen, Y. L. (2019). Optimal scheduling replacement policies for a system with multiple random works. Communications in Statistics: Theory and Methods, 48, 676–688.

    Article  Google Scholar 

  • Chen, M., Zhao, X., & Nakagawa, T. (2019). Replacement policies with general models. Annals of Operations Research, 277, 47–61.

    Article  Google Scholar 

  • Cheng, C., Zhao, X., Chen, M., & Sun, T. (2014). A failure-rate-reduction periodic preventive maintenance model with delayed initial time in a finite time period. Quality Technology & Quantitative Management, 11, 245–254.

    Article  Google Scholar 

  • Chien, Y. H. (2019). Optimal periodic replacement policy for a GPP repairable product under the free-repair warranty. Quality Technology & Quantitative Management, 16, 347–354.

    Article  Google Scholar 

  • Golmakani, H., & Moakedi, H. (2012). Periodic inspection optimisation model for a two-component repairable unit with failure interaction. Computers & Industrial Engineering, 63, 540–545.

    Article  Google Scholar 

  • Hamidi, M., Szidarovszky, F., & Szidarovszky, M. (2016). New one cycle criteria for optimizing preventive replacement policies. Reliability Engineering and System Safety, 154, 42–48.

    Article  Google Scholar 

  • Kim, D., Lim, J., & Park, D. (2015). Optimal maintenance level for second-hand product with periodic inspection schedule. Applied Stochastic Models in Business and Industry, 31, 349–359.

    Article  Google Scholar 

  • Mannai, N., & Gasmi, S. (2018). Optimal design of \(k\)-out-of-\(n\) system under first and last replacement in reliability theory. Operational Research. https://doi.org/10.1007/s12351-018-0375-4.

  • Nakagawa, T. (2005). Mathematical theory of reliability. Berlin: Springer.

    Google Scholar 

  • Nakagawa, T. (2008). Advanced reliability models and maintenance policies. London: Springer.

    Google Scholar 

  • Nakagawa, T. (2014). Random maintenance policies. Berlin: Springer.

    Book  Google Scholar 

  • Nakagawa, T., & Zhao, X. (2015). Maintenance overtime policies in reliability theory. Berlin: Springer.

    Book  Google Scholar 

  • Nakagawa, T., Zhao, X., & Yun, W. (2011). Optimal age replacement and inspection policies with random failure and replacement times. International Journal of Reliability, Quality and Safety Engineering, 18, 405–406.

    Article  Google Scholar 

  • Okamura, H., & Dohi, T. (2017). Moment-based approach for some age-based replacement problems. Journal of Industrial and Production Engineering, 34, 558–567.

    Article  Google Scholar 

  • Park, M., & Pham, H. (2016). Cost models for age replacement policies and block replacement policies under warranty. Applied Mathematical Modelling, 40, 5689–5702.

    Article  Google Scholar 

  • Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems. New York: Springer.

    Book  Google Scholar 

  • Sheu, S. H., Liu, T. H., & Zhang, Z. G. (2019). Extended optimal preventive replacement policies with random working cycle. Reliability Engineering & System Safety, 188, 398–415.

    Article  Google Scholar 

  • Sheu, S. H., Liu, T. H., Zhang, Z. G., & Tsai, H. N. (2018). The generalized age maintenance policies with random working times. Reliability Engineering & System Safety, 169, 503–514.

    Article  Google Scholar 

  • Wireman, T. (2004). Total productive maintenance. New York: Industrial Press.

    Google Scholar 

  • Zhao, X., Al-Khalifa, K., Hamouda, A., & Nakagawa, T. (2015b). First and last triggering event approaches for replacement with minimal repairs. IEEE Transactions on Reliability, 65, 197–207.

    Article  Google Scholar 

  • Zhao, X., Al-Khalifa, K. N., Hamouda, A. M. S., & Nakagawa, T. (2017a). Age replacement models: A summary with new perspectives and methods. Reliability Engineering and System Safety, 161, 95–105.

    Article  Google Scholar 

  • Zhao, X., Chen, M., & Nakagawa, T. (2016). Replacement policies for a parallel system with shortage and excess costs. Reliability Engineering and System Safety, 150, 89–95.

    Article  Google Scholar 

  • Zhao, X., Liu, H., & Nakagawa, T. (2015a). Where does “whichever occurs first” hold for preventive maintenance modelings? Reliability Engineering & System Safety, 142, 203–211.

    Article  Google Scholar 

  • Zhao, X., Mizutani, S., & Nakagawa, T. (2017b). Replacement policies for age and working numbers with random life cycle. Communications in Statistics: Theory and Methods, 46, 6791–6802.

    Article  Google Scholar 

  • Zhao, X., & Nakagawa, T. (2012). Optimization problems of replacement first or last in reliability theory. European Journal of Operational Research, 223, 141–149.

    Article  Google Scholar 

  • Zhao, X., & Nakagawa, T. (2018). Advanced maintenance policies for shock and damage models. Berlin: Springer.

    Book  Google Scholar 

  • Zhao, X., Qian, C., & Nakagawa, T. (2017c). Comparisons of maintenance policies with periodic times and repair numbers. Reliability Engineering and System Safety, 168, 161–170.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 71801126), Natural Science Foundation of Jiangsu Province (No. BK20180412), Aeronautical Science Foundation of China (No. 2018ZG52080), and Ministry of Science and Technology of Taiwan (No. MOST107-2221-E-030-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingchih Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A.1. Prove that

$$\begin{aligned} Q_1(K,1)= \frac{\int _{KT}^{(K+1)T} {\overline{G}}(t) \mathrm {d}t}{ \int _{KT}^{(K+1)T} {\overline{G}}(t){\overline{F}}(t) \mathrm {d}t} \end{aligned}$$

increases strictly with K to \(\infty \).

Proof

Noting that for \(0<T<\infty \),

$$\begin{aligned} \frac{1}{{\overline{F}}(KT)}< Q_1(K,1)< \frac{1}{{\overline{F}}((K+1)T)}, \end{aligned}$$

we obtain

$$\begin{aligned}&\lim _{K\rightarrow \infty } Q_1(K,1)=\infty ,\\&Q(K-1,1)< \frac{1}{{\overline{F}}(KT)}< Q_1(K,1), \end{aligned}$$

which follows that \(Q_1(K,1)\) increases strictly with K to \(\infty \). \(\square \)

A.2. Prove that

$$\begin{aligned} {\widetilde{Q}}_1(K,1) = \frac{\int _{KT}^{(K+1)T }G(t) \mathrm {d}t}{\int _{KT}^{(K+1)T} G(t) {\overline{F}}(t) \mathrm {d}t} \end{aligned}$$

increases strictly with K to \(\infty \).

Proof

Noting that for \(0<T<\infty \),

$$\begin{aligned} \frac{1}{{\overline{F}}(KT)}< {\widetilde{Q}}_1(K,1)< \frac{1}{{\overline{F}}((K+1)T)}, \end{aligned}$$

so that it can be proved that \( {\widetilde{Q}}_1(K,1)\) increases strictly with K to \(\infty \).

A.3. Prove that

$$\begin{aligned} Q_1(K,N)\equiv \frac{\int _{KT}^{(K+1)T } [1- G^{(N)}(t)] \mathrm {d}t }{\int _{KT}^{(K+1)T } [1- G^{(N)}(t)] {\overline{F}}(t) \mathrm {d}t} \end{aligned}$$

increases strictly with K to \(\infty \), and when \(G(t)= 1- \mathrm {e}^{-\theta t}\), it increases strictly with N to Q(K) in (6).

Proof

Noting that for \(0<T<\infty \),

$$\begin{aligned} \frac{1}{{\overline{F}}(KT)}< Q_1(K,N) < \frac{1}{ {\overline{F}}((K+1)T)}, \end{aligned}$$

we obtain

$$\begin{aligned}&\lim _{K\rightarrow \infty }Q_1(K,N)=\infty ,\\&Q_1 (K-1,N)< \frac{1}{{\overline{F}}(KT)}< Q_1(K,N), \end{aligned}$$

which follows that \(Q_1(K,N)\) increases strictly with K to \(\infty \).

When \(G(t)= 1- \mathrm {e}^{-\theta t}\), we firstly prove that

$$\begin{aligned} Q(K,j)\equiv&\frac{\int _{KT}^{(K+1)T} t^j \mathrm {e}^{-\theta t} \mathrm {d}t }{\int _{KT}^{(K+1)T} t^j \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t} \\ =&\frac{\int _0^T (t+KT)^j \mathrm {e}^{-\theta t} \mathrm {d}t}{ \int _0^T (t+KT)^j \mathrm {e}^{-\theta t} {\overline{F}}(t+KT) \mathrm {d}t}\ \ \ (j=0,1,2,\ldots ) \end{aligned}$$

increases strictly with j. Forming \(Q(K,j+1)- Q(K,j)\) and letting

$$\begin{aligned} L(j) \equiv&\int _0^T (t+KT)^{j+1} \mathrm {e}^{-\theta t} \mathrm {d}t \int _0^T (u+ KT)^j \mathrm {e}^{-\theta u}{\overline{F}}(u+KT)\mathrm {d}u\\&- \int _0^T (t+ KT)^{j+1} \mathrm {e}^{-\theta t} {\overline{F}}(t +KT)\mathrm {d}t\int _0^T (u+KT)^j \mathrm {e}^{-\theta u}\mathrm {d}u, \end{aligned}$$

i.e.,

$$\begin{aligned} L(j) =&\int _0^T (t+KT)^{j+1} \mathrm {e}^{-\theta t} \left\{ \int _0^T (u+KT)^j \mathrm {e} ^{-\theta u} [F(t+ KT)-F(u+KT)]\mathrm {d}u \right\} \mathrm {d}t\\ =&\int _0^T (t+KT)^{j+1} \mathrm {e}^{-\theta t} \left\{ \int _0^t (u+KT)^j \mathrm {e} ^{-\theta u} [F(t+KT)-F(u+KT)]\mathrm {d}u \right. \\&\left. +\int _t^T (u+ KT)^j \mathrm {e} ^{-\theta u} [F(t+KT)-F(u+KT)] \mathrm {d}u \right\} \mathrm {d}t. \end{aligned}$$

On the other hand,

$$\begin{aligned}&\int _0^T (t+KT)^{j+1} \mathrm {e}^{-\theta t} \left\{ \int _t^T (u+KT)^j \mathrm {e} ^{-\theta u} [F(t+KT)-F(u+KT)] \mathrm {d}u \right\} \mathrm {d}t\\&=\int _0^T (t+KT)^j \mathrm {e}^{-\theta t}\left\{ \int _0^t (u+KT)^{j+1} \mathrm {e}^{-\theta u} [F(u+KT)-F(t+KT)]\mathrm {d}u \right\} \mathrm {d}t. \end{aligned}$$

Thus, we obtain

$$\begin{aligned} L(j)=&\int _0^T (t+KT)^j \mathrm {e}^{-\theta t}\\&\times \left\{ \int _0^t (u+KT)^N \mathrm {e}^{-\theta u} [F(t+KT)-F(u+KT)](t-u) \mathrm {d}u \right\} \mathrm {d}t>0, \end{aligned}$$

which follows that Q(Kj) increases strictly with j. Thus,

$$\begin{aligned} Q_1(K,N)=\frac{\sum _{j=0}^{N-1} \int _{KT}^{(K+1)T} [(\theta t)^j/j!] \mathrm {e}^{-\theta t} \mathrm {d}t}{\sum _{j=0}^{N-1} \int _{KT}^{(K+1)T} [(\theta t)^j/j!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t} \end{aligned}$$

increases strictly with N to Q(K). \(\square \)

A.4. Prove that

$$\begin{aligned} H_1 (N,K)\equiv \frac{\int _0^{KT} (\theta t) ^N \mathrm {e}^{-\theta t} \mathrm {d}t }{ \int _{0}^{KT} (\theta t) ^N \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t} \end{aligned}$$

increases with K from 1 to \(1/ \int _0^\infty \theta [(\theta t)^N/N!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t \), and increases strictly with N to \(1/ {\overline{F}}(KT)\).

Proof

Noting that for \(0<T<\infty \),

$$\begin{aligned}&\lim _{K\rightarrow 0} H_1(N,K)=1,\ \ \ \lim _{N\rightarrow \infty } H_1(N,K)=\frac{1}{{\overline{F}}(KT)},\\&\lim _{K\rightarrow \infty } H_1(N,K)= \frac{1}{\int _0^\infty \theta [(\theta t)^N/N!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t }. \end{aligned}$$

Differentiating \(H_1(N,1)\) with respect to T,

$$\begin{aligned}&(\theta T)^N \mathrm {e}^{-\theta T}\int _0^T (\theta t )^N \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t - (\theta T)^N \mathrm {e}^{-\theta T} {\overline{F}}(T) \int _0^T (\theta t)^N \mathrm {e}^{-\theta t} \mathrm {d}t\\&\quad =(\theta T)^N \mathrm {e}^{-\theta T} \int _0^T (\theta t)^N \mathrm {e}^{-\theta t} [F(T)-F(t)]\mathrm {d}t >0, \end{aligned}$$

which follows that \(H_1(N,1)\) increases strictly with T. Thus, \(H_1(N,K)\) increases strictly with K from 1 to \(1/ \int _0^\infty \theta [(\theta t)^N/N!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t \). Next, forming \(H_1(N+1,1)-H_1(N,1)\) and letting

$$\begin{aligned} L(T)\equiv&\int _0^T (\theta t)^{N+1} \mathrm {e}^{-\theta t} \mathrm {d}t \int _0^T (\theta t)^{N} \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t -\int _0^T (\theta t)^{N} \mathrm {e}^{-\theta t} \mathrm {d}t \int _0^T (\theta t)^{N+1} \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t, \end{aligned}$$

we have \(L(0)=0\) and

$$\begin{aligned} L'(T)=(\theta T)^N \mathrm {e}^{-\theta T} {\overline{F}}(T) \int _0^T (\theta t)^N \mathrm {e}^{-\theta t} {\overline{F}}(t)(\theta T-\theta t)[F(T)-F(t)] \mathrm {d}t>0, \end{aligned}$$

which follows that \(L(T)>0\), i.e., \(H_1(N,K)\) increases strictly with N to \(1/{\overline{F}}(KT)\). \(\square \)

A.5. Prove that

$$\begin{aligned} {\widetilde{Q}}_1(K,N)\equiv \frac{\int _{KT}^{(K+1)T} G^{(N)} (t) \mathrm {d}t}{\int _{KT}^{(K+1)T} G^{(N)} (t) {\overline{F}}(t) \mathrm {d}t } \end{aligned}$$

increases strictly with K to \(\infty \), and when \(G(t)=1- \mathrm {e}^{-\theta t}\), it increases strictly with N from Q(K) to \(1/{\overline{F}}((K+1)T)\).

Proof

Noting that for \(0<T<\infty \),

$$\begin{aligned} \frac{1}{{\overline{F}}(KT)}< {\widetilde{Q}}_1(K,N)< \frac{1}{{\overline{F}}((K+1)T)}, \end{aligned}$$

so that it can be proved that \( {\widetilde{Q}}_1(K,N)\) increases strictly with K to \(\infty \).

When \(G(t)= 1- \mathrm {e}^{-\theta t}\),

$$\begin{aligned} {\widetilde{Q}}_1(K,N)=\frac{\sum _{j=N}^ \infty \int _{KT}^{(K+1)T} [(\theta t)^j/j!] \mathrm {e}^{-\theta t}\mathrm {d}t }{\sum _{j=N}^ \infty \int _{KT}^{(K+1)T}[(\theta t)^j/j!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t }, \end{aligned}$$

and \({\widetilde{Q}}_1(K,0 )= Q(K)\). From the proof in A.3, it can be proved that \({\widetilde{Q}}_1(K,N)\) increases strictly with N from Q(K). \(\square \)

A.6. Prove that

$$\begin{aligned} {\widetilde{H}}_1(N,K)\equiv \frac{\int _{KT}^\infty (\theta t)^N\mathrm {e}^{-\theta t} \mathrm {d}t }{ \int _{KT}^\infty (\theta t)^N\mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t } \end{aligned}$$

increases strictly with K from \(1/ \int _0^\infty \theta [(\theta t)^N/N!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t \) to \(\infty \) and increases strictly with N from \(1/ \int _0^\infty \theta \mathrm {e}^{-\theta t} {\overline{F}}(t+KT)\mathrm {d}t\) to \(\infty \).

Proof

Noting that

$$\begin{aligned}&\lim _{K\rightarrow 0} {\widetilde{H}}_1(N,K) = \frac{1}{ \int _0^\infty \theta [(\theta t)^N/N!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t }, \ \ \ \lim _{K\rightarrow \infty } {\widetilde{H}}_1(N,K) = \infty ,\\&\lim _{N\rightarrow 0}{\widetilde{H}}_1(N,K)= \frac{1}{\int _0^\infty \theta \mathrm {e}^{-\theta t} {\overline{F}}(t+KT)\mathrm {d}t},\ \ \ \lim _{N\rightarrow \infty } {\widetilde{H}}_1(N,K) =\infty . \end{aligned}$$

Differentiating \({\widetilde{H}}_1(N,1)\) with respect to T,

$$\begin{aligned}&-(\theta T)^N \mathrm {e}^{-\theta T}\int _T^\infty (\theta t)^N \mathrm {e}^{-\theta t} {\overline{F}}(t ) \mathrm {d}t + (\theta T)^N \mathrm {e}^{-\theta T} {\overline{F}}(T) \int _T^\infty (\theta t)^N\mathrm {e}^{-\theta t} \mathrm {d}t\\&= (\theta T)^N \mathrm {e}^{-\theta T} \int _T^\infty (\theta t)^N \mathrm {e}^{-\theta t} [F(t)-F(T)] \mathrm {d}t>0, \end{aligned}$$

which follows that \({\widetilde{H}}_1(N,K)\) increases strictly with K from \(1/ \int _0^\infty \theta [(\theta t)^N/N!] \mathrm {e}^{-\theta t} {\overline{F}}(t) \mathrm {d}t\) to \(\infty \).

Next, forming \({\widetilde{H}}_1(N+1,K)- {\widetilde{H}}_1(N,K)\) and letting

$$\begin{aligned} L(T)\equiv&\int _T^\infty (\theta t)^{N+1} \mathrm {e}^{\theta t} \mathrm {d}t \int _T^\infty (\theta t)^N \mathrm {e}^{\theta t} {\overline{F}}(t) \mathrm {d}t- \int _T^\infty (\theta t)^N \mathrm {e}^{\theta t} \mathrm {d}t \int _T^\infty (\theta t)^{N+1} \mathrm {e}^{\theta t} {\overline{F}}(t) \mathrm {d}t, \end{aligned}$$

we have \(L(\infty )=0\) and

$$\begin{aligned} L'(T)= (\theta T)^N \mathrm {e}^{-\theta T} \int _T^\infty (\theta t)^N \mathrm {e}^{-\theta t} (\theta T- \theta t) [F(t)- F(T)]\mathrm {d}t<0, \end{aligned}$$

which follows that \(L(T)>0\), i.e., \({\widetilde{H}}_1(N,K)\) increases strictly with N from \(1/ \int _0^\infty \theta \mathrm {e}^{-\theta t} {\overline{F}}(t+KT)\mathrm {d}t\) to \(\infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, M. & Nakagawa, T. Periodic replacement policies with shortage and excess costs. Ann Oper Res 311, 469–487 (2022). https://doi.org/10.1007/s10479-020-03566-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03566-z

Keywords

Navigation