Skip to main content
Log in

Extended age maintenance models and its optimization for series and parallel systems

  • S.I.: Statistical Reliability Modeling and Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, extended preventive replacement models for series and parallel system with n independent non-identical components are proposed. It is assumed that the system suffers from two types of failure. One is repairable (type-I) failure, at that time the system can be rectified by minimal repair. Another is non-repairable (type-II) failure, then the whole system is replaced. In the proposed models, the system is replaced at the planned time, at random working time, or at the time when type-II failure occurs, with options whichever occurs first or whichever occurs last. The average cost rate (ACR) function and the failure rate function (FRF) of the series and parallel system under the different cases are obtained respectively. Moreover, the optimal preventive replacement time of models based on minimization of the ACR function is obtained theoretically. Numerical examples are presented to evaluate the cost of the system and verify the performance of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, R., & Hunter, L. (1960). Optimum preventive maintenance policies. Operations Research, 8(1), 90–100.

    Article  Google Scholar 

  • Beichelt, F. (1993). A unifying treatment of replacement policies with minimal repair. Naval Research Logistics (NRL), 40(1), 51–67.

    Article  Google Scholar 

  • Block, H. W., Borges, W. S., & Savits, T. H. (1985). Age-dependent minimal repair. Journal of Applied Probability, 22(2), 370–385.

    Article  Google Scholar 

  • Brown, M., & Proschan, F. (1983). Imperfect repair. Journal of Applied Probability, 20(4), 851–859.

    Article  Google Scholar 

  • Chang, C. C. (2014). Optimum preventive maintenance policies for systems subject to random working times, replacement, and minimal repair. Computers & Industrial Engineering, 67, 185–194.

    Article  Google Scholar 

  • Chang, C. C., Sheu, S. H., & Chen, Y. L. (2010). Optimal number of minimal repairs before replacement based on a cumulative repair-cost limit policy. Computers & Industrial Engineering, 59(4), 603–610.

    Article  Google Scholar 

  • Chen, M., Mizutani, S., & Nakagawa, T. (2010a). Random and age replacement policies. International Journal of Reliability, Quality and Safety Engineering, 17(01), 27–39.

    Article  Google Scholar 

  • Chen, M., Nakamura, S., & Nakagawa, T. (2010b). Replacement and preventive maintenance models with random working times. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 93(2), 500–507.

    Article  Google Scholar 

  • Drinkwater, R. W., & Hastings, N. A. J. (1967). A economic replacement model. Journal of the Operational Research Society, 18(2), 121–138.

    Article  Google Scholar 

  • Hastings, N. (1969). The repair limit replacement method. Journal of the Operational Research Society, 20(3), 337–349.

    Article  Google Scholar 

  • Ito, K., Zhao, X., & Nakagawa, T. (2017). Random number of units for k-out-of-n systems. Applied Mathematical Modelling, 45, 563–572.

    Article  Google Scholar 

  • Jardine, A. K. S., & Tsang, A. H. C. (2013). Maintenance, replacement, and reliability: Theory and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Ji, H. C. (2016). Optimal replacement of heterogeneous items with minimal repairs. IEEE Transactions on Reliability, 65(2), 593–603.

    Article  Google Scholar 

  • Lam, Y. (2007). The geometric process and its applications. Singapore: World Scientific.

    Book  Google Scholar 

  • Nakagawa, T. (2006). Maintenance theory of reliability. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Nakagawa, T., & Zhao, X. (2012). Optimization problems of a parallel system with a random number of units. IEEE Transactions on Reliability, 61(2), 543–548.

    Article  Google Scholar 

  • Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research, 94(3), 425–438.

    Article  Google Scholar 

  • Proschan, F. (1965). Mathematical theory of reliability. Hoboken: Wiley.

    Google Scholar 

  • Ross, S. M. (1992). Applied probability models with optimization applications. Mineola, NY: Dover Publications.

    Google Scholar 

  • Sheu, S. H., Liu, T. H., Zhang, Z. G., & Tsai, H. N. (2018). The generalized age maintenance policies with random working times. Reliability Engineering & System Safety, 169, 503–514.

    Article  Google Scholar 

  • Stadje, W. (2003). Renewal analysis of a replacement process. Operations Research Letters, 31(1), 1–6.

    Article  Google Scholar 

  • Sugiura, T. (2004). Optimal random replacement policies. Tenth ISSAT International Conference on Reliability and Quality Design, 2004, 99–103.

    Google Scholar 

  • Wu, S., & Scarf, P. (2017). Two new stochastic models of the failure process of a series system. European Journal of Operational Research, 257(3), 763–772.

    Article  Google Scholar 

  • Young Yun, W., & Hyeon Choi, C. (2000). Optimum replacement intervals with random time horizon. Journal of Quality in Maintenance Engineering, 6(4), 269–274.

    Article  Google Scholar 

  • Zhao, X., Nakagawa, T., & Qian, C. (2012). Optimal imperfect preventive maintenance policies for a used system. Milton Park: Taylor & Francis, Inc.

    Book  Google Scholar 

  • Zhao, X., Qian, C., & Nakagawa, T. (2013). Optimal policies for cumulative damage models with maintenance last and first. Reliability Engineering & System Safety, 110, 50–59.

    Article  Google Scholar 

  • Zhao, X., Qian, C., & Nakagawa, T. (2017). Comparisons of replacement policies with periodic times and repair numbers. Reliability Engineering & System Safety, 168, 161–170.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [Grant Numbers 61573014, 11501433], the Fundamental Research Funds for the Central Universities [Grant Number JB180702] and the China Postdoctoral Science Foundation [Grant number 2019M650260]. The authors would like to thank sincerely the editor and the anonymous referees for furnishing components and valuable suggestions that improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China [Grant Numbers 61573014, 11501433], and the Fundamental Research Funds for the Central Universities [Grant Number JB180702] and the China Postdoctoral Science Foundation [Grant number 2019M650260].

Appendices

Appendix A

Derivation of Eq. (8)

$$\begin{aligned} E(U)&= T {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) + \int _0^T t {\overline{F}}_p(t) d \Big (1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) + \int _0^T t \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \\&= \left( - T {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) + \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) dt + \int _0^T t \prod _{i=1}^n {\overline{G}}_i(t) d{\overline{F}}_p(t) \right) \\&\quad + T {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) + \int _0^T t \prod _{i=1}^n {\overline{G}}_i(t) d F_p(t) \\&= \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) dt. \end{aligned}$$

Derivation of Eq. (9)

$$\begin{aligned}&\varLambda _q(T) {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) + \int _0^T \varLambda _q(t) {\overline{F}}_p(t) d \Big (1-\prod _{i=1}^n {\overline{G}}_i(t)\Big ) + \int _0^T \varLambda _q(t)\prod _{i=1}^n {\overline{G_i}} {(t)} d F_p(t) \\&\quad = \varLambda _q(T) {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) - \int _0^T \varLambda _q(t) {\overline{F}}_p(t) d \prod _{i=1}^n {\overline{G}}_i(t) + \int _0^T \varLambda _q(t) \prod _{i=1}^n {\overline{G}}_i(t) d F_p(t) \\&\quad = \varLambda _q(T) {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) - \varLambda _q(T) {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) + \int _0^T \varLambda _q(t) \prod _{i=1}^n {\overline{G}}_i(t) d {\overline{F}}_p(t) \\&\qquad + \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) q r_s(t) dt + \int _0^T \varLambda _q(t) \prod _{i=1}^n {\overline{G}}_i(t) d F_p(t) \\&\quad = \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) q r_s(t) dt. \end{aligned}$$

Derivation of Eq. (10)

$$\begin{aligned} E(V)&= C_T {\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) + C_Y \int _0^T {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) \\&\quad + C_{II} \int _0^T \prod _{i=1}^n {\overline{G}}_i(t) d F_p(t) + C_m \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) q r(t) dt \\&= -C_T \int _0^T {\overline{F}}_p(t) d\Big (1-\prod _{i=1}^n {\overline{G}}_i(t)\Big )-C_T\int _0^T \prod _{i=1}^n {\overline{G}}_i(t) dF_p(t) + C_T \\&\quad + C_Y \int _0^T {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) + C_{II} \int _0^T \prod _{i=1}^n {\overline{G}}_i(t) d F_p(t) \\&\quad + C_m \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) q r_s(t) dt \\&= C_T + (C_Y-C_T)\int _0^T {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) \\&\quad + (C_{II}-C_T)\int _0^T \prod _{i=1}^n {\overline{G}}_i(t) d F_p(t) + C_m \int _0^T {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) q r_s(t) dt. \end{aligned}$$

Appendix B

Derivation of Eq. (22)

$$\begin{aligned} E(U)&= T{\overline{F}}_p(T) \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(T) \Big ) + \int _T^\infty t {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) \\&\quad + \int _0^T t d F_p(t) + \int _T^\infty t \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \\&= T{\overline{F}}_p(T) \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(T) \Big ) + T{\overline{F}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) \\&\quad + \int _T^\infty {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t)d t + \int _T^\infty t \prod _{i=1}^n {\overline{G}}_i(t)d {\overline{F}}_p(t) \\&\quad - T{\overline{F}}_p(T) + \int _0^T {{\overline{F}}}_p(t) d t + \int _T^\infty t \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \\&= \int _0^T {\overline{F}}_p(t)d t + \int _T^\infty {\overline{F}}_p(t) \prod _{i=1}^n {\overline{G}}_i(t) d t. \end{aligned}$$

Derivation of Eq. (23)

$$\begin{aligned}&\varLambda _q(T) {{\overline{F}}}_p(T) \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(T) \Big ) + \int _T^\infty \varLambda _q(t) {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) \\&\qquad + \int _0^T \varLambda _q(t)d F_p(t) + \int _T^\infty \varLambda _q(t) \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \\&\quad = \varLambda _q(T) {{\overline{F}}}_p(T) \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(T) \Big ) + \varLambda _q(T) {{\overline{F}}}_p(T) \prod _{i=1}^n {\overline{G}}_i(T) \\&\qquad + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t + \int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t)\varLambda _q(t)d {\overline{F}}_p(t) \\&\qquad + \int _0^T \varLambda _q(t)d F_p(t) + \int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t)\varLambda _q(t)d {F}_p(t) \\&\quad = \varLambda _q(T) {{\overline{F}}}_p(T) + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t + \int _0^T \varLambda _q(t)d F_p(t) \\&\quad = \int _0^T {\overline{F}}_p(t) q r_s(t)dt + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t. \end{aligned}$$

Derivation of Eq. (24)

$$\begin{aligned} E(V)&= C_T {\overline{F}}_p(T) \left( 1 - \prod _{i=1}^n {\overline{G}}_i(T) \right) + C_Y \int _T^\infty {\overline{F}}_p(t) d \left( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \right) \\&\quad + C_{II} \left( F_p(T) + \int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \right) \\&\quad + C_m \left( \int _0^T {\overline{F}}_p(t) q r_s(t)dt + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t \right) \\&= - C_T \int _T^\infty {\overline{F}}_p(t)d \Big ( 1-\prod _{i=1}^n {\overline{G}}_i(t) \Big ) - C_T \int _T^\infty \Big ( 1-\prod _{i=1}^n {\overline{G}}_i(t) \Big ) d {\overline{F}}_p(t) \\&\quad + C_Y \int _T^\infty {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big )+C_{II} \left( F_p(T)+\int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \right) \\&\quad + C_m \left( \int _0^T {\overline{F}}_p(t) q r_s(t)dt + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t \right) \\&= (C_Y -C_T) \int _T^\infty {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big )-C_T \int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t) d {\overline{F}}_p(t) \\&\quad + C_{II} \left( F_p(T) + \int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \right) \\&\quad + C_m \left( \int _0^T {\overline{F}}_p(t) q r_s(t)dt + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t \right) \\&= C_T + (C_Y -C_T) \int _T^\infty {\overline{F}}_p(t) d \Big ( 1 - \prod _{i=1}^n {\overline{G}}_i(t) \Big ) \\&\quad + ( C_{II}-C_T)\left( F_p(T) + \int _T^\infty \prod _{i=1}^n {\overline{G}}_i(t) d {F}_p(t) \right) \\&\quad + C_m \left( \int _0^T {\overline{F}}_p(t) q r_s(t)dt + \int _T^\infty {\overline{F}}_p(t)\prod _{i=1}^n {\overline{G}}_i(t)q r_s(t)d t \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ye, J. & Wang, L. Extended age maintenance models and its optimization for series and parallel systems. Ann Oper Res 312, 495–517 (2022). https://doi.org/10.1007/s10479-019-03355-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03355-3

Keywords

Navigation