Skip to main content

Advertisement

Log in

Minimum cost edge blocker clique problem

  • S.I.: BALCOR-2017
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Given a graph with weights on its vertices and blocking costs on its edges, and a user-defined threshold \(\tau >0\), the minimum cost edge blocker clique problem (EBCP) is introduced as the problem of blocking a minimum cost subset of edges so that each clique’s weight is bounded above by \(\tau \). Clusters composed of important actors with quick communications can be effectively modeled as large-weight cliques in real-world settings such as social, communication, and biological systems. Here, we prove that EBCP is NP-hard even when \(\tau \) is a fixed parameter, and propose a combinatorial lower bound for its optimal objective. A class of inequalities that are valid for the set of feasible solution to EBCP is identified, and sufficient conditions for these inequalities to induce facets are presented. Using this class of inequalities, EBCP is formulated as a linear 0–1 program including potentially exponential number of constraints. We develop the first problem-specific branch-and-cut algorithm to solve EBCP, which utilizes the aforementioned constraints in a lazy manner. We also developed the first combinatorial branch-and-bound solution approach for this problem, which aims to handle large graph instances. Finally, computational results of solving EBCP on a collection of random graphs and power-law real-world networks by using our proposed exact algorithms are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abello, J., Pardalos, P., & Resende, M. (1999). On maximum clique problems in very large graphs. In J. Abello & J. Vitter (Eds.), External memory algorithms and visualization (Vol. 50, pp. 119–130)., DIMACS series on discrete mathematics and theoretical computer science Providence: American Mathematical Society.

    Google Scholar 

  • Afshari Rad, M., & Kakhki, H. T. (2017). Two extended formulations for cardinality maximum flow network interdiction problem. Networks, 69(4), 367–377.

    Google Scholar 

  • Altner, D. S., Ergun, O., & Uhan, N. A. (2010). The maximum flow network interdiction problem: Valid inequalities, integrality gaps, and approximability. Operations Research Letters, 38(1), 33–38.

    Google Scholar 

  • Arulselvan, A., Commander, C. W., Elefteriadou, L., & Pardalos, P. M. (2009). Detecting critical nodes in sparse graphs. Computers & Operations Research, 36(7), 2193–2200.

    Google Scholar 

  • Bader, G. D., & Hogue, C. W. V. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4(1), 1–27. https://doi.org/10.1186/1471-2105-4-2.

    Article  Google Scholar 

  • Balasundaram, B., & Butenko, S. (2008). Network clustering. In B. H. Junker & F. Schreiber (Eds.), Analysis of biological networks (pp. 113–138). New York: Wiley.

    Google Scholar 

  • Bar-Noy, A., Khuller, S., & Schieber, B. (1995). The complexity of finding most vital arcs and nodes. Tech. Rep. CS-TR-3539, Department of Computer Science, University of Maryland.

  • Bazgan, C., Toubaline, S., & Tuza, Z. (2011). The most vital nodes with respect to independent set and vertex cover. Discrete Applied Mathematics, 159(17), 1933–1946.

    Google Scholar 

  • Bazgan, C., Toubaline, S., & Vanderpooten, D. (2010). Complexity of determining the most vital elements for the 1-median and 1-center location problems. In Proceedings of the 4th annual international conference on combinatorial optimization and applications, COCOA (Vol. 6508, pp. 237–251).

  • Bazgan, C., Toubaline, S., & Vanderpooten, D. (2013). Critical edges/nodes for the minimum spanning tree problem: Complexity and approximation. Journal of Combinatorial Optimization, 26(1), 178–189.

    Google Scholar 

  • Butenko, S., & Wilhelm, W. (2006). Clique-detection models in computational biochemistry and genomics. European Journal of Operational Research, 173, 1–17.

    Google Scholar 

  • Di Summa, M., Grosso, A., & Locatelli, M. (2011). Complexity of the critical node problem over trees. Computers & Operations Research, 38(12), 1766–1774.

    Google Scholar 

  • Di Summa, M., Grosso, A., & Locatelli, M. (2012). Branch and cut algorithms for detecting critical nodes in undirected graphs. Computational Optimization and Applications, 53(3), 649–680.

    Google Scholar 

  • Dinh, T. N., Thai, M. T., & Nguyen, H. T. (2014). Bound and exact methods for assessing link vulnerability in complex networks. Journal of Combinatorial Optimization, 28(1), 3–24.

    Google Scholar 

  • Dinh, T. N., Xuan, Y., Thai, M. T., Pardalos, P. M., & Znati, T. (2012). On new approaches of assessing network vulnerability: Hardness and approximation. IEEE/ACM Transactions on Networking, 20(2), 609–619.

    Google Scholar 

  • Fischetti, M., Ljubić, I., Monaci, M., & Sinnl, M. (2017). A new general-purpose algorithm for mixed-integer bilevel linear programs. Operations Research, 65(6), 1615–1637. https://doi.org/10.1287/opre.2017.1650.

    Article  Google Scholar 

  • Frederickson, G. N., & Solis-Oba, R. (1996). Increasing the weight of minimum spanning trees. In Proceedings of the 7th annual ACM-SIAM symposium on discrete algorithms, SODA (pp. 539–546).

  • Ghare, P. M., Montgomery, D. C., & Turner, W. C. (1971). Optimal interdiction policy for a flow network. Naval Research Logistics Quarterly, 18(1), 37–45.

    Google Scholar 

  • Glass, L. M., & Glass, R. J. (2008). Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health, 8, 61.

    Google Scholar 

  • Israeli, E., & Wood, R. K. (2002). Shortest-path network interdiction. Networks, 40(2), 97–111.

    Google Scholar 

  • Karp, R. (1972). Reducibility among combinatorial problems. In R. Miller, J. Thatcher, & J. Bohlinger (Eds.), Complexity of computer computations. The IBM research symposia series (pp. 85–103). New York: Springer. https://doi.org/10.1007/978-1-4684-2001-2_9

  • Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., et al. (2008). On short paths interdiction problems: Total and node-wise limited interdiction. Theory of Computing Systems, 43(2), 204–233.

    Google Scholar 

  • Knuth, D. (1998). The art of computer programming: Sorting and searching (2nd ed., Vol. 3). Redwood City: Addison Wesley Longman Publishing Co., Inc.

    Google Scholar 

  • Lin, K. C., & Chern, M. S. (1993). The most vital edges in the minimum spanning tree problem. Information Processing Letters, 45(1), 25–31.

    Google Scholar 

  • Mahdavi Pajouh, F., Boginski, V., & Pasiliao, E. L. (2014). Minimum vertex blocker clique problem. Networks, 64(1), 48–64. https://doi.org/10.1002/net.21556.

    Article  Google Scholar 

  • Mahdavi Pajouh, F., Walteros, J. L., Boginski, V., & Pasiliao, E. L. (2015). Minimum edge blocker dominating set problem. European Journal of Operational Research, 247(1), 16–26.

    Google Scholar 

  • Miller, R. E., & Muller, D. E. (1960). A problem of maximum consistent subsets. Tech. Rep. RC–240, IBM Research Report.

  • Moon, J. W., & Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics, 3(1), 23–28.

    Google Scholar 

  • Östergård, P. R. J. (2001). A new algorithm for the maximum-weight clique problem. Nordic Journal of Computing, 8(4), 424–436.

    Google Scholar 

  • Ries, B., Bentz, C., Picouleau, C., de Werra, D., Costa, M., & Zenklusen, R. (2010). Blockers and transversals in some subclasses of bipartite graphs: When caterpillars are dancing on a grid. Discrete Mathematics, 310(11), 132–146.

    Google Scholar 

  • Ryan, A. R., & Nesreen, K. A. (2015). The network data repository with interactive graph analytics and visualization. In Proceedings of the twenty-ninth AAAI conference on artificial intelligence. http://networkrepository.com.

  • Scott, J. (2000). Social network analysis: A handbook (2nd ed.). London: Sage Publications.

    Google Scholar 

  • Shen, Y., Nguyen, N. P., Xuan, Y., & Thai, M. T. (2013). On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Transactions on Networking (TON), 21(3), 963–973.

    Google Scholar 

  • Spirin, V., & Mirny, L. A. (2003). Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 100(21), 12,123–12,128.

    Google Scholar 

  • Tang, Y., Richard, J. P. P., & Smith, J. C. (2016). A class of algorithms for mixed-integer bilevel min–max optimization. Journal of Global Optimization, 66(2), 225–262.

    Google Scholar 

  • Veremyev, A., Boginski, V., & Pasiliao, E. L. (2014a). Exact identification of critical nodes in sparse networks via new compact formulations. Optimization Letters, 8(4), 1245–1259.

    Google Scholar 

  • Veremyev, A., Prokopyev, O. A., & Pasiliao, E. L. (2014b). An integer programming framework for critical elements detection in graphs. Journal of Combinatorial Optimization, 28(1), 233–273.

    Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis. New York: Cambridge University Press.

    Google Scholar 

  • Wollmer, R. (1964). Removing arcs from a network. Operations Research, 12(6), 934–940.

    Google Scholar 

  • Wong, P., Sun, C., Lo, E., Yiu, M. L., Wu, X., Zhao, Z., et al. (2017). Finding \(k\) most influential edges on flow graphs. Information Systems, 65, 93–105.

    Google Scholar 

  • Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modeling, 17(2), 1–18.

    Google Scholar 

  • Wu, Q., & Hao, J. K. (2015). A review on algorithms for maximum clique problems. European Journal of Operational Research, 242(3), 693–709. https://doi.org/10.1016/j.ejor.2014.09.064, http://www.sciencedirect.com/science/article/pii/S0377221714008030.

  • Yezerska, O., Pajouh, F. M., & Butenko, S. (2017b). On biconnected and fragile subgraphs of low diameter. European Journal of Operational Research, 263(2), 390–400. https://doi.org/10.1016/j.ejor.2017.05.020, http://www.sciencedirect.com/science/article/pii/S0377221717304484.

  • Yezerska, O., Mahdavi Pajouh, F., Veremyev, A., & Butenko, S. (2017a). Exact algorithms for the minimum s-club partitioning problem. Annals of Operations Research,. https://doi.org/10.1007/s10479-017-2665-2.

    Article  Google Scholar 

  • Zenklusen, R. (2010). Network flow interdiction on planar graphs. Discrete Applied Mathematics, 158(13), 1441–1455.

    Google Scholar 

  • Zenklusen, R., Ries, B., Picouleau, C., de Werra, D., Costa, M., & Bentz, C. (2009). Blockers and transversals. Discrete Mathematics, 309(13), 4306–4314.

    Google Scholar 

Download references

Acknowledgements

We are thankful for the editor’s and referees’ careful reviews and comments that significantly improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foad Mahdavi Pajouh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of Lemmas 1–3

Appendix: Proofs of Lemmas 13

Lemma 1

Given a nonnegative integer a, \(\gamma _a\) is the smallest nonnegative integer such that \(a\le \frac{1}{2}\gamma _a(\gamma _a+1)\).

Proof

For a nonnegative integer a and \(b\ge 0\), \(a\le \frac{1}{2}b(b+1)\) if and only if \(b\ge \frac{1}{2}(-1+\sqrt{1+8a})\). Therefore, \(\lceil \frac{1}{2}(-1+\sqrt{1+8a})\rceil \) is the smallest nonnegative integer such that \(a\le \frac{1}{2}\lceil \frac{1}{2}(-1+\sqrt{1+8a})\rceil (\lceil \frac{1}{2}(-1+\sqrt{1+8a})\rceil +1)\). \(\square \)

Lemma 2

Given a nonempty set \(D\subseteq V\) and a positive integer a,

  1. 1.

    \(\gamma _{a}\le a\).

  2. 2.

    \(0\le \gamma _{a}-\gamma _{a-1}\le 1\).

  3. 3.

    if \(a\le \frac{1}{2}|D|(|D|-1)\), then \(\varPhi (D,a)-\varPhi (D,a-1)=w_{\mathbf{d }[\gamma _{a}+1]}\).

  4. 4.

    if \(1\le a\le |D|-1\), then \(\varPhi (D,a)\ge \sum _{k=1}^aw_{\mathbf{d }[k+1]}\).

  5. 5.

    if \(\emptyset \ne S\subseteq {\mathcal {E}}(D)\), then \(\sum _{(i,j)\in S}\min \{w_i,w_j\}\le \varPhi (D,|S|)\).

Proof

  1. 1.

    Notice that \(\gamma _{a}\) is well-defined, because \(a>0\). We know \(a(a-1)\ge 0\). So, \(1+8a\le (2a+1)^2\). Therefore,

    $$\begin{aligned} \frac{1}{2}(-1+\sqrt{1+8a})\le a. \end{aligned}$$

    Since a is an integer, then

    $$\begin{aligned} \lceil \frac{1}{2}(-1+\sqrt{1+8a})\rceil =\gamma _{a}\le a. \end{aligned}$$
  2. 2.

    Note that since \(0\le a-1<a\), then \(\gamma _{a}\) and \(\gamma _{a-1}\) are well-defined. By Lemma 1, \(a\le \frac{1}{2}\gamma _{a}(\gamma _{a}+1)\). So,

    $$\begin{aligned} a-1<\frac{1}{2}\gamma _{a}(\gamma _{a}+1), \end{aligned}$$

    and again by Lemma 1, \(\gamma _{a-1}\le \gamma _{a}\). On the other hand, again by Lemma 1,

    $$\begin{aligned} a-1\le \frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1). \end{aligned}$$

    Since \(\gamma _{a-1}\ge 0\), then

    $$\begin{aligned} a\le \frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1)+1\le \frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1)+1+\gamma _{a-1}. \end{aligned}$$

    Therefore,

    $$\begin{aligned} a\le \frac{1}{2}(\gamma _{a-1}+1)((\gamma _{a-1}+1)+1), \end{aligned}$$

    and by Lemma 1, \(\gamma _{a}\le \gamma _{a-1}+1\).

  3. 3.

    Note that since \(1\le a\le \frac{1}{2}|D|(|D|-1)\), then \(\varPhi (D,a)\) and \(\varPhi (D,a-1)\) are well-defined. By Lemma 2.2, either \(\gamma _{a}=\gamma _{a-1}\), or \(\gamma _{a}=\gamma _{a-1}+1\). If \(\gamma _{a}=\gamma _{a-1}\), then by definition, \(\varPhi (D,a)=\varPhi (D,a-1)+w_{\mathbf{d }[\gamma _{a}+1]}.\) Alternatively, suppose \(\gamma _{a}=\gamma _{a-1}+1\). Then by Lemma 1,

    $$\begin{aligned} a-1\le \frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1)<a. \end{aligned}$$

    Because \(\frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1)\) is an integer, then

    $$\begin{aligned} a-1=\frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1). \end{aligned}$$
    (10)

    Additionally, since \(\gamma _{a}=\gamma _{a-1}+1\), then

    $$\begin{aligned} \begin{aligned} \varPhi (D,a)=&\left( \sum _{k=0}^{\gamma _{a-1}}kw_{\mathbf{d }[k+1]}\right) +\gamma _{a}w_{\mathbf{d }[\gamma _{a}+1]}\\&-(\frac{1}{2}\gamma _{a-1}(\gamma _{a-1}+1)-(a-1))w_{\mathbf{d }[\gamma _{a}+1]}\\&-(\gamma _{a}-1)w_{\mathbf{d }[\gamma _{a}+1]}. \end{aligned} \end{aligned}$$
    (11)

    Using Eqs. (10) and (11), we have \(\varPhi (D,a)=\varPhi (D,a-1)+w_{\mathbf{d }[\gamma _{a}+1]}.\)

  4. 4.

    Notice that since \(0<a\le |D|-1\le \frac{1}{2}|D|(|D|-1)\), then both sides of the inequality are well-defined. We use induction on a to prove this result. If \(a=1\), then it can be easily verified that the inequality holds as equality. Now, assume that the inequality holds for any integer l such that \(1\le l<|D|-1\). We need to prove that the inequality is also valid for integer \(l+1\). By Lemma 2.3, we have

    $$\begin{aligned} \varPhi (D,l+1)=\varPhi (D,l)+w_{\mathbf{d }[\gamma _{l+1}+1]}. \end{aligned}$$

    So, it is enough to show that

    $$\begin{aligned} \varPhi (D,l)+w_{\mathbf{d }[\gamma _{l+1}+1]}\ge w_{\mathbf{d }[l+2]}+\sum _{k=1}^lw_{\mathbf{d }[k+1]}. \end{aligned}$$

    By Lemma 2.1, we have \(\gamma _{l+1}\le l+1\). Therefore, \(w_{\mathbf{d }[\gamma _{l+1}+1]}\ge w_{\mathbf{d }[l+2]}\). On the other hand, by induction assumption, we have \(\varPhi (D,l)\ge \sum _{k=1}^lw_{\mathbf{d }[k+1]}.\) So, the inequality is valid for integer \(l+1\).

  5. 5.

    Note that since \(1\le |S|\le \frac{1}{2}|D|(|D|-1)\), then \(\varPhi (D,|S|)\) is well-defined. To show this, we use induction on |S|. Let \(|S|=1\) (e.g., \(S=\{(i_0,j_0)\}\)). Suppose \(\min \{w_{i_0},w_{j_0}\}>\varPhi (D,1)=w_{\mathbf{d }[2]}\). This means \(w_{i_0}>w_{\mathbf{d }[2]}\) and \(w_{j_0}>w_{\mathbf{d }[2]}\), which is a contradiction as both \(i_0\) and \(j_0\) belong to D. Now, we assume if \(|S|=k\), where \(1\le k\le \frac{1}{2}|D|(|D|-1)-1\), then

    $$\begin{aligned} \sum _{(i,j)\in S}\min \{w_i,w_j\}\le \varPhi (D,|S|), \end{aligned}$$

    and show the correctness of our claim for the case of \(|S|=k+1\).

    Assume \(|S|=k+1\) and

    $$\begin{aligned} \sum _{(i,j)\in S}\min \{w_i,w_j\}> \varPhi (D,|S|). \end{aligned}$$
    (12)

    Consider an arbitrary edge \((i_1,j_1)\in S\). Using Inequality (12) and Lemma 2.3,

    $$\begin{aligned} \min \{w_{i_1},w_{j_1}\}+\sum _{(i,j)\in S\setminus \{(i_1,j_1)\}}\min \{w_i,w_j\}> \varPhi (D,|S|-1)+w_{\mathbf{d }[\gamma _{|S|}+1]}. \end{aligned}$$

    On the other hand, by induction assumption,

    $$\begin{aligned} \sum _{(i,j)\in S\setminus \{(i_1,j_1)\}}\min \{w_i,w_j\}\le \varPhi (D,|S|-1). \end{aligned}$$

    So, \(\min \{w_{i_1},w_{j_1}\}>w_{\mathbf{d }[\gamma _{|S|}+1]}\). Therefore, for any \((i,j)\in S\), we have \(w_{i}>w_{\mathbf{d }[\gamma _{|S|}+1]}\) and \(w_{j}>w_{\mathbf{d }[\gamma _{|S|}+1]}\). Consequently, we have \(w_{i}>w_{\mathbf{d }[\gamma _{|S|}+1]}\) for any \(i\in D^\prime \), where \(D^\prime =\cup _{(i,j)\in S}\{i,j\}.\) Since \(D^\prime \subseteq D\) and \(w_{i}>w_{\mathbf{d }[\gamma _{|S|}+1]}\) for any \(i\in D^\prime \), then \(|D^\prime |\le \gamma _{|S|}\).

    Notice that since \(|S|\le \frac{1}{2}|D^\prime |(|D^\prime |-1)\), then

    $$\begin{aligned} |D^\prime |\ge \lceil \frac{1}{2}(1+\sqrt{1+8|S|})\rceil = \lceil \frac{1}{2}(-1+\sqrt{1+8|S|})+1\rceil =\gamma _{|S|}+1, \end{aligned}$$

    which is a contradiction.

\(\square \)

Lemma 3

Given a clique D in graph G and a set \(S\subseteq E\), graph \(G\langle E{\setminus }S\rangle \) contains a clique \(D^\prime \subseteq D\) such that

$$\begin{aligned} {\mathcal {W}}(D^\prime )\ge {\mathcal {W}}(D)-\sum _{(i,j)\in S\cap {\mathcal {E}}(D)}\min \{w_i,w_j\}. \end{aligned}$$

Proof

Let \(S^\prime =S\cap {\mathcal {E}}(D)\). The correctness of this lemma is proved by induction on \(|S^\prime |\) as follows. If \(|S^\prime |=0\), then \(D^\prime =D\) is a clique in graph \(G\langle E{\setminus }S\rangle \) for which the above inequality is valid. Now, we assume if \(|S^\prime |=k\ge 0\), then graph \(G\langle E{\setminus }S\rangle \) contains a clique \({\tilde{D}}\subseteq D\) such that

$$\begin{aligned} {\mathcal {W}}({\tilde{D}})\ge {\mathcal {W}}(D)-\sum _{(i,j)\in S^\prime }\min \{w_i,w_j\}, \end{aligned}$$

and show the correctness of this lemma for the case of \(|S^\prime |=k+1\). Assume \(|S^\prime |=k+1\). Consider an arbitrary edge \((i_1,j_1)\in S^\prime \) (note that \((i_1,j_1)\) exists), and let \({\tilde{D}}\subseteq D\) denote the clique in \(G\langle E{\setminus }(S\setminus \{(i_1,j_1)\})\rangle \) such that

$$\begin{aligned} {\mathcal {W}}({\tilde{D}})\ge {\mathcal {W}}(D)-\sum _{(i,j)\in S^\prime \setminus \{(i_1,j_1)\}}\min \{w_i,w_j\}. \end{aligned}$$
(13)

If \(i_1\not \in {\tilde{D}}\) or \(j_1\not \in {\tilde{D}}\), then \(D^\prime ={\tilde{D}}\) is a clique in \(G\langle E{\setminus }S\rangle \) and by Inequality (13),

$$\begin{aligned} {\mathcal {W}}(D^\prime )> {\mathcal {W}}(D)-\sum _{(i,j)\in S^\prime }\min \{w_i,w_j\}. \end{aligned}$$

Alternatively, if \(i_1\in {\tilde{D}}\) and \(j_1\in {\tilde{D}}\), then \({\tilde{D}}\setminus \{i_1\}\) and \({\tilde{D}}\setminus \{j_1\}\) are both cliques in \(G\langle E{\setminus }S\rangle \), which means \(G\langle E{\setminus }S\rangle \) contains a clique \(D^\prime \subset {\tilde{D}}\) such that

$$\begin{aligned} {\mathcal {W}}(D^\prime )={\mathcal {W}}({\tilde{D}})-\min \{w_{i_1},w_{j_1}\}. \end{aligned}$$

Again by Inequality (13), we have

$$\begin{aligned} {\mathcal {W}}(D^\prime )\ge {\mathcal {W}}(D)-\sum _{(i,j)\in S^\prime }\min \{w_i,w_j\}. \end{aligned}$$

This completes the proof of this lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi Pajouh, F. Minimum cost edge blocker clique problem. Ann Oper Res 294, 345–376 (2020). https://doi.org/10.1007/s10479-019-03315-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-019-03315-x

Keywords

Navigation