Skip to main content
Log in

A faster dual algorithm for the Euclidean minimum covering ball problem

  • S.I.: Stochastic Modeling and Optimization, in memory of András Prékopa
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Dearing and Zeck (Oper Res Lett 37(3):171–175, 2009) presented a dual algorithm for the problem of the minimum covering ball in \({\mathbb {R}}^n\). Each iteration of their algorithm has a computational complexity of at least \({\mathscr {O}}(n^3)\). In this paper we propose a modification to their algorithm that, together with an implementation that uses updates to the QR factorization of a suitable matrix, achieves a \({\mathscr {O}}(n^2)\) iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, P. K., & Sharathkumar, R. (2015). Streaming algorithms for extent problems in high dimensions. Algorithmica, 72(1), 83–98.

    Article  Google Scholar 

  • Bâdoiu, M., & Clarkson, KL. (2003). Smaller core-sets for balls. In Proceedings of the 14th annual ACM-SIAM symposium on discrete algorithms (pp. 801–802). SIAM, Philadelphia, PA, USA, SODA ’03.

  • Bâdoiu, M., Har-Peled, S., & Indyk, P. (2002). Approximate clustering via core-sets. In Proceedings of the 34th annual ACM symposium on theory of computing (pp. 250–257). ACM, New York, NY, USA, STOC ’02.

  • Chan, T. M., & Pathak, V. (2011). Streaming and dynamic algorithms for minimum enclosing balls in high dimensions (pp. 195–206). Berlin: Springer.

    Google Scholar 

  • Dearing, P., & Zeck, C. R. (2009). A dual algorithm for the minimum covering ball problem in \({\mathbb{R}}^n\). Operations Research Letters, 37(3), 171–175.

    Article  Google Scholar 

  • Dyer, M., Megiddo, N., & Welzl, E. (2004). Linear programming, Chap. 45 (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC.

    Google Scholar 

  • Fischer, K., & Gärtner, B. (2004). The smallest enclosing ball of balls: Combinatorial structure and algorithms. International Journal of Computational Geometry and Applications, 14(4–5), 341–387.

    Article  Google Scholar 

  • Fischer, K., Gärtner, B., & Kutz, M. (2003). Fast smallest-enclosing-ball computation in high dimensions. In: Proceedings of the Algorithms—ESA 2003: 11th Annual European Symposium (pp. 630–641). Budapest, Hungary, September 16–19, 2003, Springer, Berlin.

  • Gärtner, B. (1999). Fast and robust smallest enclosing balls (pp. 325–338). Berlin: Springer.

    Google Scholar 

  • Gärtner, B., & Schönherr, S. (2000). An efficient, exact, and generic quadratic programming solver for geometric optimization. In Proceedings of the 16th annual ACM symposium on computational geometry (SCG) (pp. 110–118).

  • Golub, G. H., & Van Loan, C. (1996). Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Hale, T. S., & Moberg, C. R. (2003). Location science research: A review. The Annals of Operations Research, 123(1), 21–35.

    Article  Google Scholar 

  • Hopp, T. H., & Reeve, C. P. (1996). An algorithm for computing the minimum covering sphere in any dimension. Technical Report NISTIR 5831, National Institute of Standards and Technology, Gaithersburg, MD, USA

  • Hubbard, P. M. (1996). Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics, 15(3), 179–210.

    Article  Google Scholar 

  • Kumar, P., Mitchell, J. S. B, & Yildirim, E. A. (2003). Computing core-sets and approximate smallest enclosing hyperspheres in high dimensions. In Proceedings of the 5th workshop on algorithm engineering and experiments (pp. 44–55). Springer, Heidelberg, ALENEX03.

  • Larsson, T., & Källberg, L. (2013). Fast and robust approximation of smallest enclosing balls in arbitrary dimensions. In: Proceedings of the 11th Eurographics/ACMSIGGRAPH symposium on geometry processing (pp. 93–101). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP ’13.

  • Larsson, T., Capannini, G., & Kllberg, L. (2016). Parallel computation of optimal enclosing balls by iterative orthant scan. Computers and Graphics, 56, 1–10.

    Article  Google Scholar 

  • Megiddo, N. (1983). Linear-time algorithms for linear programming in \({\mathbb{R}}^3\) and related problems. SIAM Journal on Computing, 12(4), 759–776.

    Article  Google Scholar 

  • Megiddo, N. (1984). Linear programming in linear time when the dimension is fixed. Journal of the ACM, 31(1), 114–127.

    Article  Google Scholar 

  • Moradi, E., & Bidkhori, M. (2009). Single facility location problem. In R. Zanjirani Farahani & M. Hekmatfar (Eds.), Facility location: Concepts, models, algorithms and case studies (pp. 37–68). Heidelberg: Physica-Verlag HD.

    Chapter  Google Scholar 

  • Nielsen, F., & Nock, R. (2009). Approximating smallest enclosing balls with applications to machine learning. International Journal of Computational Geometry and Applications, 19(05), 389–414.

    Article  Google Scholar 

  • Plastria, F. (2002). Continuous covering location problems. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 37–79). Berlin: Springer.

    Chapter  Google Scholar 

  • Sylvester, J. J. (1857). A question in the geometry of situation. Quaterly Journal of Pure and Applied Mathematics, 1, 1–79.

    Google Scholar 

  • Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids) (pp. 359–370). Berlin: Springer.

    Google Scholar 

  • Yildirim, E. A. (2008). Two algorithms for the minimum enclosing ball problem. SIAM Journal on Optimization, 19(3), 1368–1391.

    Article  Google Scholar 

  • Zarrabi-Zadeh, H., & Chan, T. M. (2006). A simple streaming algorithm for minimum enclosing balls. In Proceedings of the 18th Canadian conference on computational geometry (pp. 139–142).

  • Zhou, G., Tohemail, K. C., & Sun, J. (2005). Efficient algorithms for the smallest enclosing ball problem. Computational Optimization and Applications, 30(2), 147–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Cavaleiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaleiro, M., Alizadeh, F. A faster dual algorithm for the Euclidean minimum covering ball problem. Ann Oper Res (2018). https://doi.org/10.1007/s10479-018-3123-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10479-018-3123-5

Keywords

Navigation