Skip to main content

Advertisement

Log in

The impact of short-term variability and uncertainty on long-term power planning

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Traditionally, long-term investment planning models have been the apparent tool to analyse future developments in the energy sector. With the increasing penetration of renewable energy sources, however, the modelling of short-term operational issues becomes increasingly important in two respects: first, in relation to variability and second, with respect to uncertainty. A model that includes both may easily become intractable, while the negligence of variability and uncertainty may result in sub-optimal and/or unrealistic decision-making. This paper investigates methods for aggregating data and reducing model size to obtain tractable yet close-to-optimal investment planning decisions. The aim is to investigate whether short-term variability or uncertainty is more important and under which circumstances. In particular, we consider a generation expansion problem and compare various representations of short-term variability and uncertainty of demand and renewable supply. The main results are derived from a case study on the Danish power system. Our analysis shows that the inclusion of representative days is crucial for the feasibility and quality of long-term power planning decisions. In fact, we observe that short-term uncertainty can be ignored if a sufficient number of representative days is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({\mathcal {G}}\) :

Set of production units

\({\mathcal {G}}^w\) :

Set of wind production units

T :

Set of time periods

\(T_d\) :

Set of time periods, except the last, within an aggregation period (e.g. \(\{1,\ldots ,23\}\) for a day)

S :

Set of scenarios for short-term uncertainty

\(c_{g}^I\) :

Linear investment cost of unit g (€/MW)

\(c_{g}\) :

Linear production cost of unit g (€/MWh)

\(c_{g}^+\) :

Additional cost of upward balancing of unit g (€/MWh)

\(c_{g}^-\) :

Opportunity cost of downward balancing of unit g (€/MWh)

\(r_g^D\) :

Ramp down rate of unit g (p.u.)

\(r_g^U\) :

Ramp up rate of unit g (p.u.)

\(\rho _{gt}\) :

Predicted production factor of unit g at time t (p.u.)

\({\tilde{\rho }}_{gts}\) :

Realised production factor of unit \(g \in {\mathcal {G}}^w\) at time t in scenario s (p.u.)

\(\kappa \) :

Minimum wind penetration (%)

\(v^L\) :

Cost of load shedding (€/MWh)

\(v^S\) :

Cost of wind curtailment (€/MWh)

\(\nu _{t}\) :

Load factor at time t (p.u.)

\({\bar{d}}\) :

Maximum load (MWh)

\(\tau _t\) :

Duration of time period t

\(\pi _{s}\) :

Probability of short-term scenario s

\({\bar{p}}_{g}\) :

Investment capacity of unit g

\(p_{gt}\) :

Scheduled production of unit g at time t

\(k_{t}\) :

Scheduled load shedding at time t

\(l_{t}\) :

Scheduled wind curtailment at time t

\(p_{gts}^+\) :

Real-time upward balancing of unit \(g \in {\mathcal {G}}{\setminus }{\mathcal {G}}^w \) at time t in scenario s

\(p_{gts}^-\) :

Real-time downward balancing of unit \(g \in {\mathcal {G}}{\setminus }{\mathcal {G}}^w \) at time t in scenario s

\({\tilde{p}}_{gts}\) :

Real-time production of unit \(g \in {\mathcal {G}}{\setminus }{\mathcal {G}}^w \) at time t in scenario s

\(\varDelta k_{ts}\) :

Real-time load shedding at time t in scenario s

\(\varDelta l_{ts}\) :

Real-time regulating wind curtailment at time t in scenario s

References

  • Akbari, T., Rahimi-Kian, A., & Tavakoli Bina, M. (2012). Security-constrained transmission expansion planning: A stochastic multi-objective approach. International Journal of Electrical Power and Energy Systems, 43(1), 444–453.

    Article  Google Scholar 

  • Aneiros, G., Vilar, J., & Raña, P. (2016). Short-term forecast of daily curves of electricity demand and price. International Journal of Electrical Power and Energy Systems, 80, 96–108.

    Article  Google Scholar 

  • Babrowski, S., Jochem, P., & Fichtner, W. (2015). Electricity storage systems in the future German energy sector. Computers and Operations Research, 66, 1–13.

    Article  Google Scholar 

  • Baringo, L., & Conejo, A. J. (2011). Wind power investment within a market environment. Applied Energy, 88(9), 3239–3247.

    Article  Google Scholar 

  • Baringo, L., & Conejo, A. J. (2012). Transmission and wind power investment. IEEE Transactions on Power Systems, 27(2), 885–893.

    Article  Google Scholar 

  • Baringo, L., & Conejo, A. J. (2013). Correlated wind-power production and electric load scenarios for investment decisions. Applied Energy, 101, 475–482.

    Article  Google Scholar 

  • Bertsch, V., & Fichtner, W. (2015). A participatory multi-criteria approach for power generation and transmission planning. Annals of Operations Research, 245, 177–207.

    Article  Google Scholar 

  • Bludszuweit, H., Dominiguez-Navarro, J. A., & Llombart, A. (2008). Statistical analysis of wind power forecast error. IEEE Transactions on Power Systems, 23(3), 983–991.

    Article  Google Scholar 

  • Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  • Chaton, C., & Doucet, J. (2003). Uncertainty and investment in electricity generation with an application to the case of hydro-quebec. Annals of Operations Research, 120, 59–80.

    Article  Google Scholar 

  • Danish Energy Agency. (2012). Technology data for energy plants. Energinetdk, 1, 212.

    Google Scholar 

  • Dupačová, J., Gröwe-Kuska, N., & Römisch, W. (2003). Scenario reduction in stochastic programming. Mathematical Programming, 95(3), 493–511.

    Article  Google Scholar 

  • Ea Energianalyse. (2014). Elproduktionsomkostninger. Energistyrelsen, 1(1), 1–42.

  • Ehrenmann, A., & Smeers, Y. (2011). Generation capacity expansion in a risky environment: A stochastic equilibrium analysis. Operations Research, 59(6), 1332–1346.

    Article  Google Scholar 

  • ElNozahy, M. S., Salama, M. M. A., & Seethapathy, R. (2013). A probabilistic load modelling approach using clustering algorithms. In 2013 IEEE power energy society general meeting (pp. 1–5). IEEE https://doi.org/10.1109/PESMG.2013.6672073, http://ieeexplore.ieee.org/document/6672073/

  • Entsoe. (2016). European network of transmission system operators for electricity.

  • European Commision (2014) Communication from the commission to the european parliament, the council, the European economic and social committee and the committee of the regions—A policy framework for climate and energy in the period from 2020 to 2030. European Commission p Brussels.

  • Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., & Ruiz, C. (2010). Complementarity modeling in energy markets (Vol. 157). New York: Springer.

    Google Scholar 

  • Ghofrani, M., Arabali, A., Etezadi-Amoli, M., & Fadali, M. S. (2013). A framework for optimal placement of energy storage units within a power system with high wind penetration. IEEE Transactions on Sustainable Energy, 4(2), 434–442.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Haydt, G., Leal, V., Pina, A., & Silva, C. A. (2011). The relevance of the energy resource dynamics in the mid/long-term energy planning models. Renewable Energy, 36(11), 3068–3074.

    Article  Google Scholar 

  • Hemmati, R., Hooshmand, R. A., & Khodabakhshian, A. (2014). Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties. Renewable and Sustainable Energy Reviews, 29, 1–10.

    Article  Google Scholar 

  • Jabr, R. A., Džafić, I., & Pal, B. C. (2015). Robust optimization of storage investment on transmission networks. IEEE Transactions on Power Systems, 30(1), 531–539.

    Article  Google Scholar 

  • Jin, S., Ryan, S. M., Watson, J. P., & Woodruff, D. L. (2011). Modeling and solving a large-scale generation expansion planning problem under uncertainty. Energy Systems, 2(3–4), 209–242.

    Article  Google Scholar 

  • Liu, Y., Sioshansi, R., & Conejo, A. J. (2017). Hierarchical clustering to find representative operating periods for capacity-expansion modeling. IEEE Transaction on Power Systems, 99, 1–8.

    Google Scholar 

  • Ludig, S., Haller, M., Schmid, E., & Bauer, N. (2011). Fluctuating renewables in a long-term climate change mitigation strategy. Energy, 36(11), 6674–6685.

    Article  Google Scholar 

  • Ma, J., Silva, V., Belhomme, R., Kirschen, D. S., & Ochoa, L. F. (2013). Evaluating and planning flexibility in sustainable power systems. IEEE Transactions on Sustainable Energy, 4(1), 200–209.

    Article  Google Scholar 

  • Morales, J. M., Pineda, S., Conejo, A. J., & Carrión, M. (2009). Scenario reduction for futures market trading in electricity markets. IEEE Transactions on Power Systems, 24(2), 878–888.

    Article  Google Scholar 

  • Murphy, F. H., & Smeers, Y. (2005). Generation capacity expansion in imperfectly competitive restructured electricity markets. Operations Research, 53(4), 646–661.

    Article  Google Scholar 

  • Nahmmacher, P., Schmid, E., Hirth, L., & Knopf, B. (2016). Carpe diem: A novel approach to select representative days for long-term power system modeling. Energy, 112, 430–442.

    Article  Google Scholar 

  • Nordpool. (2017). Nordpool. www.nordpoolspot.com/.

  • Orfanos, G. A., Georgilakis, P. S., & Hatziargyriou, N. D. (2013). Transmission expansion planning of systems with increasing wind power integration. IEEE Transactions on Power Systems, 28(2), 1355–1362.

    Article  Google Scholar 

  • Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74–86.

    Article  Google Scholar 

  • Pina, A., Silva, C. A., & Ferrão, P. (2013). High-resolution modeling framework for planning electricity systems with high penetration of renewables. Applied Energy, 112, 215–223.

    Article  Google Scholar 

  • Pineda, S., & Morales, J. M. (2016). Capacity expansion of stochastic power generation under two-stage electricity markets. Computers and Operations Research, 70, 101–114.

    Article  Google Scholar 

  • Pineda, S., Morales, J. M., Ding, Y., & Stergaard, J. (2014). Impact of equipment failures and wind correlation on generation expansion planning. Electric Power Systems Research, 116, 451–458.

    Article  Google Scholar 

  • Pineda, S., Morales, J. M., & Boomsma, T. K. (2016). Impact of forecast errors on expansion planning of power systems with a renewables target. European Journal of Operational Research, 248(3), 1113–1122.

    Article  Google Scholar 

  • Poncelet, K., Delarue, E., Six, D., Duerinck, J., & D’haeseleer, W. (2016). Impact of the level of temporal and operational detail in energy-system planning models. Applied Energy, 162, 631–643.

    Article  Google Scholar 

  • Poncelet, K., Hoschle, H., Delarue, E., Virag, A., & D’haeseleer, W. (2017). Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Transactions on Power Systems, 32(3), 1936–1948. https://doi.org/10.1109/TPWRS.2016.2596803.

    Article  Google Scholar 

  • Pozo, D., Sauma, E., & Contreras, J. (2013). A three-level static MILP model for generation and transmission expansion planning. IEEE Transactions on Power Systems, 28(1), 202–210.

    Article  Google Scholar 

  • Römisch, W. (2002). Scenred2. GAMS Development Corporation

  • Rosenthal, R. E. (2014). GAMS âĂ\(\breve{T}\): A user’s guide. GAMS development corporation 1

  • Schröder, A., Kunz, F., Meiss, J., Mendelevitch, R., & von Hirschhausen, C. (2013). Current and prospective costs of electricity generation until 2050 2013. Deutsches Institut für Wirtschaftsforschung

  • Schwarz, H., Bertsch, V., & Fichtner, W. (2018). Two-stage stochastic, large-scale optimization of a decentralized energy system: A case study focusing on solar pv, heat pumps and storage in a residential quarter. OR Spectrum, 40(1), 265–310.

    Article  Google Scholar 

  • Sisternes, F. J. D., & Webster, M. D. (2013). Optimal selection of sample weeks for approximating the net load in generation planning problems. ESD Working Paper Series 1

  • Slednev, V., Bertsch, V., & Fichtner, W. (2017). A multi-objective time segmentation approach for power generation and transmission models. In K. F. Dörner, I. Ljubic, G. Pflug, & G. Tragler (Eds.), Operations Research Proceedings 2015 (pp. 707–714). Cham: Springer.

    Chapter  Google Scholar 

  • Stoft, S. (2002). Power system economics. Journal of Energy Litterature, 8, 94–99.

    Google Scholar 

  • The Danish Government. (2013). The Danish climate policy plan, The Ministry of climate. Energy and Building, 1(August), 61.

    Google Scholar 

  • Wang, J., Shahidehpour, M., Li, Z., & Botterud, A. (2009). Strategic generation capacity expansion planning with incomplete information. IEEE Transactions on Power Systems, 24(2), 1002–1010.

    Article  Google Scholar 

  • Wogrin, S., Duenas, P., Delgadillo, A., & Reneses, J. (2014). A new approach to model load levels in electric power systems with high renewable penetration. IEEE Transactions on Power Systems, 29(5), 2210–2218.

    Article  Google Scholar 

Download references

Acknowledgements

T. K. Boomsma gratefully acknowledges support from the project Analyses of Hourly Electricity Demand (AHEAD) funded by ForskEl 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik C. Bylling.

A: Results tables

A: Results tables

All results listed in two Tables: one for non-zero balancing costs and one for balancing costs equal to zero.

See Tables  7 and 8.

Table 7 Investment decisions and runtimes for the different models in the case of \(c^+_g = 0.05{c_g}/{r_g^u}\) and \(c_g^-=0.05{c_g}/{r_g^d}\)
Table 8 Investment decisions and runtimes for the different models in the case of zero balancing costs for all units

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bylling, H.C., Pineda, S. & Boomsma, T.K. The impact of short-term variability and uncertainty on long-term power planning. Ann Oper Res 284, 199–223 (2020). https://doi.org/10.1007/s10479-018-3097-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-3097-3

Keywords

Navigation