Skip to main content
Log in

Assessing the relative efficiency of Chinese high-tech industries: a dynamic network data envelopment analysis approach

  • S.I.: SOME
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The high-tech industry in China has largely developed in recent decades. To provide a basis for the sustainable development of high-tech industry, the government should evaluate its performance to find out its strengths and weaknesses that are critical for the future improvement of business operations. Dynamic network data envelopment analysis has received considerable attention from researchers evaluating the performance of a system during long-term production. However, studies on the issue of shared outputs caused by the lagged production effect of inputs are rare. In a real high-tech industry, the outputs during a production period are derived from the inputs in that production period and also from the inputs in the previous period. These intertemporal shared outputs in a system cannot be easily divided into different periods. Thus, a new dynamic two-stage data envelopment analysis approach is proposed to measure the efficiency of such system with a two-stage structure and shared outputs. We divide a high-tech activity system into two stages: technology research and development stage and technology digestion and absorption stage, where intertemporal shared outputs occur. Empirical results from our approach indicate that Chinese high-tech industries are weak in the technology digestion and absorption stage. Finally, suggestions are provided to improve the overall efficiency of Chinese high-tech industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akther, S., Fukuyama, H., & Weber, W. L. (2013). Estimating two-stage network slacks-based inefficiency: An application to Bangladesh banking. Omega,41(1), 88–96.

    Google Scholar 

  • An, Q., Chen, H., Xiong, B., Wu, J., & Liang, L. (2017). Target intermediate products setting in a two-stage system with fairness concern. Omega,73, 49–59.

    Google Scholar 

  • An, Q., Meng, F., Ang, S., & Chen, X. (2018a). A new approach for fair efficiency decomposition in two-stage structure system. Operational Research,18(1), 257–272.

    Google Scholar 

  • An, Q., Meng, F., & Xiong, B. (2018b). Interval cross efficiency for fully ranking decision making units using DEA/AHP approach. Annals of Operations Research. https://doi.org/10.1007/s10479-018-2766-6.

    Article  Google Scholar 

  • Avkiran, N. K. (2015). An illustration of dynamic network DEA in commercial banking including robustness tests. Omega,55, 141–150.

    Google Scholar 

  • Avkiran, N. K., & McCrystal, A. (2014). Dynamic network range-adjusted measure vs. dynamic network slacks-based measure. Journal of the Operations Research Society of Japan,57(1), 1–14.

    Google Scholar 

  • Castelli, L., Pesenti, R., & Ukovich, W. (2010). A classification of DEA models when the internal structure of the decision making units is considered. Annals of Operations Research,173(1), 207–235.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research,2(6), 429–444.

    Google Scholar 

  • Chen, C. M. (2009). A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks. European Journal of Operational Research,194(3), 687–699.

    Google Scholar 

  • Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research,196(3), 1170–1176.

    Google Scholar 

  • Chen, C. M., & van Dalen, J. (2010). Measuring dynamic efficiency: Theories and an integrated methodology. European Journal of Operational Research,203(3), 749–760.

    Google Scholar 

  • Chen, C. J., Wu, H. L., & Lin, B. W. (2006). Evaluating the development of high-tech industries: Taiwan’s science park. Technological Forecasting and Social Change,73(4), 452–465.

    Google Scholar 

  • Cook, W. D., Liang, L., & Zhu, J. (2010). Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega,38(6), 423–430.

    Google Scholar 

  • Cook, W. D., & Zhu, J. (Eds.). (2014). Data envelopment analysis: A handbook of modeling internal structure and network, (Vol. 208). Berlin: Springer.

    Google Scholar 

  • Färe, R., & Grosskopf, S. (1996). Intertemporal production frontiers: With dynamic DEA. Dordrech: Norwelh Kluwer.

    Google Scholar 

  • Färe, R., Grosskopf, S., Karagiannis, G., & Margaritis, D. (2017). Data envelopment analysis and its related linear programming models. Annals of Operations Research,250(1), 37–43.

    Google Scholar 

  • Golany, B. (1988). Note—A note on including ordinal relations among multipliers in data envelopment analysis. Management Science,34(8), 1029–1033.

    Google Scholar 

  • Guan, J., & Chen, K. (2010). Measuring the innovation production process: A cross-region empirical study of China’s high-tech innovations. Technovation,30(5), 348–358.

    Google Scholar 

  • Guan, J., & Chen, K. (2012). Modeling the relative efficiency of national innovation systems. Research Policy,41(1), 102–115.

    Google Scholar 

  • Halkos, G. E., Tzeremes, N. G., & Kourtzidis, S. A. (2014). A unified classification of two-stage DEA models. Surveys in Operations Research and Management Science,19(1), 1–16.

    Google Scholar 

  • Hashimoto, A., & Haneda, S. (2008). Measuring the change in R&D efficiency of the Japanese pharmaceutical industry. Research Policy,37(10), 1829–1836.

    Google Scholar 

  • Herrera-Restrepo, O., Triantis, K., Trainor, J., Murray-Tuite, P., & Edara, P. (2016). A multi-perspective dynamic network performance efficiency measurement of an evacuation: A dynamic network-DEA approach. Omega,60, 45–59.

    Google Scholar 

  • Hsieh, L. F., & Lin, L. H. (2010). A performance evaluation model for international tourist hotels in Taiwan—An application of the relational network DEA. International Journal of Hospitality Management,29(1), 14–24.

    Google Scholar 

  • Hu, J., Yang, Y., Zhang, X., & Chen, X. (2017). Similarity and entropy measures for hesitant fuzzy sets. International Transactions in Operational Research. https://doi.org/10.1111/itor.12477.

    Article  Google Scholar 

  • Huergo, E., & Jaumandreu, J. (2004). Firms’ age, process innovation and productivity growth. International Journal of Industrial Organization,22(4), 541–559.

    Google Scholar 

  • Ichniowski, C., Shaw, K., & Prennushi, G. (1997). The effects of human resource management practices on productivity: A study of steel finishing lines. The American Economic Review,87(3), 291–313.

    Google Scholar 

  • Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research,192(3), 949–962.

    Google Scholar 

  • Kao, C. (2014). Network data envelopment analysis: A review. European Journal of Operational Research,239(1), 1–16.

    Google Scholar 

  • Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research,185(1), 418–429.

    Google Scholar 

  • Kawaguchi, H., Tone, K., & Tsutsui, M. (2014). Estimation of the efficiency of Japanese hospitals using a dynamic and network data envelopment analysis model. Health Care Management Science,17(2), 101–112.

    Google Scholar 

  • Kou, M., Chen, K., Wang, S., & Shao, Y. (2016). Measuring efficiencies of multi-period and multi-division systems associated with DEA: An application to OECD countries’ national innovation systems. Expert Systems with Applications,46, 494–510.

    Google Scholar 

  • Krivonozhko, V. E., Førsund, F. R., & Lychev, A. V. (2017). On comparison of different sets of units used for improving the frontier in DEA models. Annals of Operations Research,250(1), 5–20.

    Google Scholar 

  • Lee, T., Zhang, Y., & Jeong, B. H. (2016). A multi-period output DEA model with consistent time lag effects. Computers & Industrial Engineering,93, 267–274.

    Google Scholar 

  • Li, L. B., Liu, B. L., Liu, W. L., & Chiu, Y. H. (2017). Efficiency evaluation of the regional high-tech industry in China: A new framework based on meta-frontier dynamic DEA analysis. Socio-Economic Planning Sciences,60, 24–33.

    Google Scholar 

  • Liang, L., Cook, W. D., & Zhu, J. (2008). DEA models for two-stage processes: Game approach and efficiency decomposition. Naval Research Logistics,55(7), 643–653.

    Google Scholar 

  • Moreno, P., & Lozano, S. (2018). Super SBI dynamic network DEA approach to measuring efficiency in the provision of public services. International Transactions in Operational Research,25(2), 715–735.

    Google Scholar 

  • Sahoo, B. K., Kerstens, K., & Tone, K. (2012). Returns to growth in a nonparametric DEA approach. International Transactions in Operational Research,19(3), 463–486.

    Google Scholar 

  • Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 US commercial banks. Management Science,45(9), 1270–1288.

    Google Scholar 

  • Sun, H. (2011). R&D inputs, Outputs and its efficiency of high-tech enterprises: Evidence from Zhejiang Province. Proceedings of The Twelfth West Lake International Conference on Small & Medium Business, 2010, 913–917.

    Google Scholar 

  • Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega,42(1), 124–131.

    Google Scholar 

  • Tseng, Y. F., Lee, T. Z., & Wu, C. H. (2010). Examining the impact of human resource practices on organizational performance by using the AHP/DEA model. International Journal of Innovative Computing, Information and Control,6(8), 3401–3412.

    Google Scholar 

  • Wu, Y. (2009). An empirical analysis on technical efficiency of China’s hi-tech industry. Proceedings of 2009 International Conference on Education Management and Engineering, 2009, 561–566.

    Google Scholar 

  • Wu, C., Li, Y., Liu, Q., & Wang, K. (2013). A stochastic DEA model considering undesirable outputs with weak disposability.Mathematical and Computer Modelling, 58(5–6), 980–989.

    Google Scholar 

  • Wu, J., Yu, Y., Zhu, Q., An, Q., & Liang, L. (2018). Closest target for the orientation-free context-dependent DEA under variable returns to scale. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2017.1409865.

    Article  Google Scholar 

  • You, Y. Q., & Jie, T. (2014). A study of the operation efficiency and cost performance indices of power-supply companies in China based on a dynamic network slacks-based measure model. Omega,60, 85–97.

    Google Scholar 

  • Yu, M. M., Chen, L. H., & Hsiao, B. (2016). Dynamic performance assessment of bus transit with the multi-activity network structure. Omega,60, 15–25.

    Google Scholar 

  • Zha, Y., Liang, N., Wu, M., & Bian, Y. (2016). Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach. Omega,60, 60–72.

    Google Scholar 

  • Zhang, L., & Chen, Y. (2018). Equivalent solutions to additive two-stage network data envelopment analysis. European Journal of Operational Research,264(3), 1189–1191.

    Google Scholar 

  • Zhang, R., Sun, K., Delgado, M. S., & Kumbhakar, S. C. (2012). Productivity in China’s high technology industry: Regional heterogeneity and R&D. Technological Forecasting and Social Change,79(1), 127–141.

    Google Scholar 

Download references

Acknowledgements

The research is supported by National Natural Science Foundation of China (No. 71501189; 71571192), Natural Science Foundation of Hunan Province (2017JJ3397), the open project of “Mobile Health” Ministry of Education-China Mobile Joint Laboratory of Central South University, the Innovation-Driven Project of Central South University (No. 2018CX039), the State Key Program of National Natural Science of China (Nos. 71431006, 71631008). Major Project for National Natural Science Foundation of China (71790615). Key Laboratory of Hunan Province for New Retail Virtual Reality Technology, Hunan University of Commerce (2017TP1026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beibei Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Q., Meng, F., Xiong, B. et al. Assessing the relative efficiency of Chinese high-tech industries: a dynamic network data envelopment analysis approach. Ann Oper Res 290, 707–729 (2020). https://doi.org/10.1007/s10479-018-2883-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-018-2883-2

Keywords

Navigation