Skip to main content
Log in

A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands

  • OR in Transportation
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In pickup and delivery problems (PDPs), the aim is to transport loads from pickup locations (suppliers) to delivery locations (customers) using a set of vehicles while respecting a set of constraints. In this paper, we discuss a new variant of the PDP which has not been treated yet in the literature to our best knowledge. This new variant is the selective pickup and delivery problem with time windows and paired demands (SPDPTWPD). Its first specificity relies on the occurrence of time Windows, capacity and precedence constraints. In addition, it includes several depots and a fleet of vehicles, and the selective aspect must be taken into account. It means the choice of customers to be served when the global capacity of the vehicles is not sufficient. We proposed firstly a new mono-objective model to solve the SPDPTWPD. Then we tested our proposed algorithm on benchmark instances of near (less constrained) problems from the literature. Secondly, we have generated new instances adapted to the considered problem. Thirdly, we worked on a lexicographic approach to deal with the multi-objective aspect of our problem. The efficiency of our approaches is shown by the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al Chami, Z., Manier, H., Manier, MA. (2016). New model for a variant of pick up and delivery problem. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, pp 1708–1713.

  • Baldacci, R., Bartolini, E., & Mingozzi, A. (2011). An exact algorithm for the pickup and delivery problem with time windows. Operations Research, 59(2), 414–426.

    Article  Google Scholar 

  • Bent, R., & Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows. Computers & Operations Research, 33(4), 875–893.

    Article  Google Scholar 

  • Collette, Y., & Siarry, P. (2013). Multiobjective optimization: Principles and case studies. Berlin: Springer.

    Google Scholar 

  • Cordeau, J. F., & Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals of Operations Research, 153(1), 29–46.

    Article  Google Scholar 

  • Cordeau, J. F., Laporte, G., Savelsbergh, M. W., & Vigo, D. (2006). Vehicle routing. Transportation, Handbooks in Operations Research and Management Science, 14, 367–428.

    Article  Google Scholar 

  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80–91.

    Article  Google Scholar 

  • Desrosiers, J., Dumas, Y., & Soumis, F. (1986). A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical and Management Sciences, 6(3–4), 301–325.

    Article  Google Scholar 

  • Desrosiers, J., Dumas, Y., Solomon, M. M., & Soumis, F. (1995). Time constrained routing and scheduling. Handbooks in Operations Research and Management Science, 8, 35–139.

    Article  Google Scholar 

  • Dridi, IH., Kammarti, R., Borne, P., Ksouri, M. (2008). Un algorithme génétique pour le problème de ramassage et de livraison avec fenêtres de temps à plusieurs véhicules. In: CIFA 2008, Bucarest (Roumanie), Septembre 2008 Proc. Article 176.

  • El-Hajj, R. (2015). Vehicle routing problems with profits, exact and heuristic approaches. PhD thesis, Compiègne.

  • Furtadoa, M. G. S., Munaria, P., & Morabitoa, R. (2015). Pickup and delivery problem with time windows: a new compact two-index formulation. Tech. rep.: Federal University of São Carlos.

  • Golden, B. L., Raghavan, S., & Wasil, E. A. (2008). The vehicle routing problem: latest advances and new challenges (Vol. 43). Berlin: Springer.

    Book  Google Scholar 

  • Hayari, N., Manier, M., Bloch, C., El Moudni, A. (2003). Un algorithme évolutionniste pour le problème de tournées sélectives avec contraintes de fenêtres de temps. In: 4ème Conférence Francophone de MOdélisation et SIMulation MOSIM, vol 3.

  • Jih, W. R., & Hsu, J Yj. (1999). Dynamic vehicle routing using hybrid genetic algorithms. IEEE International Conference on Robotics and Automation, IEEE, 1, 453–458.

    Article  Google Scholar 

  • Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416.

    Article  Google Scholar 

  • Laporte, G., & Osman, I. H. (1995). Routing problems: A bibliography. Annals of Operations Research, 61(1), 227–262.

    Article  Google Scholar 

  • Lenstra, J. K., & Kan, A. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221–227.

    Article  Google Scholar 

  • Li, H., & Lim, A. (2003). A metaheuristic for the pickup and delivery problem with time windows. International Journal on Artificial Intelligence Tools, 12(02), 173–186.

    Article  Google Scholar 

  • Lim, H., Lim, A., Rodrigues, B. (2002). Solving the pickup and delivery problem with time windows using squeaky wheel optimization with local search. In: Proceedings of AMCIS 2002, p 319.

  • Lu, Q., & Dessouky, M. M. (2006). A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows. European Journal of Operational Research, 175(2), 672–687.

    Article  Google Scholar 

  • Nalepa, J., Blocho, M. (2016). Enhanced guided ejection search for the pickup and delivery problem with time windows. In: Asian Conference on Intelligent Information and Database Systems, Springer, pp 388–398.

  • Nanry, W. P., & Barnes, J. W. (2000). Solving the pickup and delivery problem with time windows using reactive tabu search. Transportation Research Part B: Methodological, 34(2), 107–121.

    Article  Google Scholar 

  • Nguyen, PK., Crainic, TG., Toulouse, M. (2015). Multi-trip pickup and delivery problem with time windows and synchronization. Annals of Operations Research, 1–36. doi:10.1007/s10479-015-2001-7.

  • Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery problems. part i: Transportation between customers and depot. Journal für Betriebswirtschaft, 58(1), 21–51.

    Article  Google Scholar 

  • Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery problems. part ii: Transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), 81–117.

    Article  Google Scholar 

  • Psaraftis, H. N. (1983). An exact algorithm for the single vehicle many-to-many dial-a-ride problem with time windows. Transportation Science, 17(3), 351–357.

    Article  Google Scholar 

  • Ropke, S., & Cordeau, J. F. (2009). Branch and cut and price for the pickup and delivery problem with time windows. Transportation Science, 43(3), 267–286.

    Article  Google Scholar 

  • Savelsbergh, M., & Sol, M. (1994). A branch-and-price algorithm for the pickup and delivery problem with time windows. Tech. rep., Technical Report COC-94-06, Georgia Institute of Technology, Atlanta.

  • Savelsbergh, M. W., & Sol, M. (1995). The general pickup and delivery problem. Transportation science, 29(1), 17–29.

    Article  Google Scholar 

  • Schönberger, J., & Kopfer, H. (2005). Planning the incorporation of logistics service providers to fulfill precedence-and time window-constrained transport requests in a most profitable way. In B. Fleischmann & A. Klose (Eds.), Distribution Logistics. Lecture Notes in Economics and Mathematical Systems (Vol. 544). Berlin, Heidelberg: Springer.

  • Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2), 254–265.

    Article  Google Scholar 

  • Ting, C. K., & Liao, X. L. (2013). The selective pickup and delivery problem: Formulation and a memetic algorithm. International Journal of Production Economics, 141(1), 199–211.

    Article  Google Scholar 

  • Toth, P., Vigo, D. (2002). The vehicle routing problem (society for industrial and applied mathematics, philadelphia). Tech. rep., ISBN 0-89871-579-2.

  • Toth, P., & Vigo, D. (2014). Vehicle routing: Problems, methods, and applications (Vol. 18). Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Velasco, N., Dejax, P., Gueret, C. (2006). Un algorithme génétique pour un problème de collectes et livraisons bi-objectif. In: 6ème Conférence Francophone de MOdélisation et SIMulation MOSIM, Rabat, Morocco.

  • Wang, C., Mu, D., Zhao, F., & Sutherland, J. W. (2015). A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup-delivery and time windows. Computers & Industrial Engineering, 83, 111–122.

    Article  Google Scholar 

  • Yao, B., Yu, B., Hu, P., Gao, J., & Zhang, M. (2016). An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Annals of Operations Research, 242(2), 303–320.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the ANR (French National Research Agency) in the framework of the project TCDU (Collaborative Transportation in Urban Distribution). This project ANR-14-CE22-0017 is labelled by the Pôle Véhicule du Futur, and is jointly performed by four partners, the three french universities of technology (UTT, UTBM, UTC) and the society Share And Move Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Al Chami.

Additional information

This work was financially supported by the french Research Agency ANR (ANR-14-CE22-0017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Chami, Z., Manier, H. & Manier, MA. A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands. Ann Oper Res 273, 237–255 (2019). https://doi.org/10.1007/s10479-017-2500-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2500-9

Keywords

Navigation