Skip to main content
Log in

On the relationship between the discrete and continuous bounding moment problems and their numerical solutions

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We present a brief survey of some of the basic results related to the classical continuous moment problems (CMP) and the recently developed discrete moment problems (DMP), clarifying their relationship and propose new methods for the solution of univariate continuous and discrete power moment problems. In the classical as well as in the recently developed discrete moment problems the coefficient function in the objective is supposed to be higher order convex (in the entire interval or part of it), or constant in an interval while zero elsewhere, or equal to a constant at some point and zero elsewhere. The concept of a regenerative block (of points) is introduced, for the case of the DMP, that makes it possible to create lower and upper bounds for other functions in the objective. The CMP are solved by discretization and sequential application of dual type algorithm. Numerical results are presented with moments of order up to 40 and various applications are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhiezer, N. (1961). The classical moment problem and some related topics in analysis. Moscow (in Russian).

  • Alizadeh, F., Haeberly, J., & Overton, M. (1998). Primal–dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM Journal on Optimization, 8(3), 746–768.

    Article  Google Scholar 

  • Andersson, J., Jörnsten, K., Nonås, S., Sandal, L., & Ubøe, J. (2013). A maximum entropy approach to the newsvendor problem with partial information. European Journal of Operational Research, 228(1), 190–200.

    Article  Google Scholar 

  • Antolín, J., Zarzo, A., & Angulo, J. (1993). Upper and lower bounds on the radial electron density in atoms. Physical Review A, 48(6), 4149.

    Article  Google Scholar 

  • Bender, C., Brody, D., & Meister, B. (2002). Inverse of a Vandermonde matrix. preprint.

  • Bertsimas, D., & Popescu, I. (2005). Optimal inequalities in probability theory: A convex optimization approach. SIAM Journal on Optimization, 15(3), 780–804.

    Article  Google Scholar 

  • Bienaymé, I. (1853). Considérations a l’appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. Imprimerie de Mallet-Bachelier.

  • Birge, J. (1987). Computing bounds for stochastic programming problems by means of a generalized moment problem. Mathematics of Operations Research, 12, 149–162.

    Article  Google Scholar 

  • Björck, A., & Pereyra, V. (1970). Solution of Vandermonde systems of equations. Mathematics of Computation, 24(112), 893–903.

    Article  Google Scholar 

  • Boros, E., & Prékopa, A. (1989a). Closed form two-sided bounds for probabilities that at least r and exactly r out of n events occur. Mathematics of Operations Research, 14, 317–342.

    Article  Google Scholar 

  • Boros, E., & Prékopa, A. (1989b). Probabilistic bounds and algorithms for the maximum satisfiability problem. Annals of Operations Research, 21(1), 109–126.

    Article  Google Scholar 

  • Boros, E., Prékopa, A., & Lih, K. (1991). The use of binomial moments for bounding network reliability. DIMACS Series in Discrete Mathematics, 5, 197–212.

    Google Scholar 

  • Bukszár, J. (2003). Hypermultitrees and sharp Bonferroni inequalities. Mathematical Inequalities and Applications, 6(4), 727–743.

    Article  Google Scholar 

  • Charnes, A., Cooper, W., & Kortanek, K. (1962). Duality, Haar programs, and finite sequence spaces. Proceedings of the National Academy of Sciences of the United States of America, 48(5), 783.

    Article  Google Scholar 

  • Charnes, A., Cooper, W., & Kortanek, K. (1965). On representations of semi-infinite programs which have no duality gaps. Management Science, 12, 113–121.

    Article  Google Scholar 

  • Chebyshev, P. (1867). Des valeurs moyennes. Liouvilles Journal of Mathematics Pures Applications, 12(2), 177–184.

    Google Scholar 

  • Chebyshev, P. (1874). Sur les valeurs limites des intégrales. Imprimerie de Gauthier-Villars.

  • Chebyshev, P. (1890). Sur deux théorèmes relatifs aux probabilités. Acta Mathematica, 14(1), 305–315.

    Article  Google Scholar 

  • Chen, J. (2008a). A two-stage estimation procedure. Biometrics, 64, 406–412.

    Article  Google Scholar 

  • Chen, J. (2008b). Interface on the minimum effective dose using binary data. Communications in Statistics, 38, 2124–2135.

    Article  Google Scholar 

  • Chen, L., He, S., & Zhang, S. (2011). Tight bounds for some risk measures, with applications to robust portfolio selection. Operations Research, 59(4), 847–865.

    Article  Google Scholar 

  • Courtois, C., & Denuit, M. (2009). Moment bounds on discrete expected stop-loss transforms, with applications. Methodology and Computing in Applied Probability, 11(3), 307–338.

    Article  Google Scholar 

  • Daum, S., & Werner, R. (2011). A novel feasible discretization method for linear semi-infinite programming applied to basket option pricing. Optimization, 60(10–11), 1379–1398.

    Article  Google Scholar 

  • Dawson, D., & Sankoff, D. (1967). An inequality for probabilities. Proceedings of the American Mathematical Society, 18, 504–507.

    Article  Google Scholar 

  • Denuit, M., Lefevre, C., & Mesfioui, M. (1999). On s-convex stochastic extrema for arithmetic risks. Insurance: Mathematics and Economics, 25(2), 143–155.

    Google Scholar 

  • Dhurandhar, A., & Dobra, A. (2009). Semi-analytical method for analyzing models and model selection measures based on moment analysis. ACM Transactions on Knowledge Discovery from Data, 3(1), 2.

    Article  Google Scholar 

  • Ermoliev, Y., Gaivoronski, A., & Nedeva, C. (1985). Stochastic optimization problems with incomplete information on distribution functions. SIAM Journal on Control and Optimization, 23, 697.

    Article  Google Scholar 

  • Fischer, H. (2010). A history of the central limit theorem: From classical to modern probability theory. Berlin: Springer.

    Google Scholar 

  • Galambos, J. (1985). A new bound on multivariate extreme value distributions. Annales University Science Budapest (Section Mathematics), 27, 37–40.

    Google Scholar 

  • Galambos, J. (1988). Variants of the graph dependent model in extreme value theory. Communications in Statistics-Theory and Methods, 17(7), 2211–2221.

    Article  Google Scholar 

  • Gallego, G., & Moon, I. (1993). The distribution free newsboy problem: review and extensions. Journal of the Operational Research Society, 44, 825–834.

    Article  Google Scholar 

  • Gallego, G., Ryan, J., & Simchi-Levi, D. (2001). Minimax analysis for finite-horizon inventory models. IIE Transactions, 33(10), 861–874.

    Google Scholar 

  • Gao, L., & Prékopa, A. (2001). On performance prediction of cellular telephone networks. Tech. rep., RUTCOR Research Report.

  • Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1(2), 141–149.

    Google Scholar 

  • Gessel, I., & Viennot, G. (1985). Binomial determinants, paths, and hook length formulae. Advances in Mathematics, 58(3), 300–321.

    Article  Google Scholar 

  • Glashoff, K. (1979). Duality theory of semi-infinite programming. Semi-Infinite Programming, 15, 1–16.

    Article  Google Scholar 

  • Glaz, J., Pozdnyakov, V., & Wallenstein, S. (2009). Scan statistics: Methods and applications. Berlin: Springer.

    Book  Google Scholar 

  • Goberna, M., & López, M. (1998). Linear semi-infinite optimization. New York: Wiley.

    Google Scholar 

  • Godfrey, G., & Powell, W. (2001). An adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distribution. Management Science, 47(8), 1101–1112.

    Article  Google Scholar 

  • Golub, G., & Meurant, G. (2010). Matrices, moments and quadrature with applications. Princeton: Princeton University Press.

    Google Scholar 

  • Grünwald, G. (1942). On the theory of interpolation. Acta Mathematica, 75(1), 219–245.

    Article  Google Scholar 

  • Haar, A. (1924). Uber lineare ungleichungen. Acta Scientiarum Mathematicarum (Szeged), 2, 1–14.

    Google Scholar 

  • Habib, A., & Szántai, T. (2000). New bounds on the reliability of the consecutive k-out-of-r-from-n: F system. Reliability Engineering & System Safety, 68(2), 97–104.

    Article  Google Scholar 

  • Hamburger, H. (1919). Beiträge zur konvergenztheorie der Stieltjesschen kettenbrüche. Mathematische Zeitschrift, 4(3), 186–222.

    Article  Google Scholar 

  • Hamburger, H. (1920). Über eine erweiterung des Stieltjesschen momentenproblems. Mathematische Annalen, 81(2), 235–319.

    Google Scholar 

  • Hausdorff, F. (1921). Summationsmethoden und momentfolgen. Mathematische Zeitschrift, 9(1), 74–109.

    Article  Google Scholar 

  • Hausdorff, F. (1923). Momentprobleme für ein endliches intervall. Mathematische Zeitschrift, 16(1), 220–248.

    Article  Google Scholar 

  • Hettich, R., & Kortanek, K. (1993). Semi-infinite programming: Theory, methods, and applications. SIAM review, 35, 380–429.

    Article  Google Scholar 

  • Heyde, C., & Seneta, E. (1977). Statistical theory anticipated. New York: Springer.

    Google Scholar 

  • Higham, N. (1987). Error analysis of the Björck–Pereyra algorithms for solving vandermonde systems. Numerische Mathematik, 50(5), 613–632.

    Article  Google Scholar 

  • Isii, K. (1960). The extrema of probability determined by generalized moments. Annals of the Institute of Statistical Mathematics, 12(2), 119–134.

    Article  Google Scholar 

  • Isii, K. (1962). On sharpness of Tchebycheff-type inequalities. Annals of the Institute of Statistical Mathematics, 14(1), 185–197.

    Article  Google Scholar 

  • Jordan, C. (1965). Calculus of finite differences. Chelsea Pub Co.

  • Kamburowski, J. (2015). On the distribution-free newsboy problem with some non-skewed demands. Operations Research Letters, 43(2), 165–171.

    Article  Google Scholar 

  • Karlin, S., & Studden, W. (1966). Tchebycheff systems: With applications in analysis and statistics (Vol. 376). New York: Interscience Publishers.

    Google Scholar 

  • Karney, D. (1981). Duality gaps in semi-infinite linear programming an approximation problem. Mathematical Programming, 20(1), 129–143.

    Article  Google Scholar 

  • Kemperman, J. (1968). The general moment problem, a geometric approach. The Annals of Mathematical Statistics, 39(1), 93–122.

    Article  Google Scholar 

  • Kjeldsen, T. (1993). The early history of the moment problem. Historia Mathematica, 20(1), 19–44.

    Article  Google Scholar 

  • Kounias, S., & Marin, J. (1976). Best linear Bonferroni bounds. SIAM Journal on Applied Mathematics, 30(2), 307–323.

    Article  Google Scholar 

  • Krein, M. (1951). Chebyshev’s and Markov’s ideas in the theory of limiting values of integrals and their further development. Uspekhi Matem Nauk.

  • Krein, M., & Nudelman, A. (1977). The Markov moment problem and extremal problems. Nauka, Moscow. 1973 (in Russian). Translations of mathematical monographs. American Mathematical Society, Providence, Rhode Island 50.

  • Kwerel, S. (1975a). Most stringent bounds on aggregated probabilities of partially specified dependent probability systems. Journal of the American Statistical Association, 70(350), 472–479.

    Article  Google Scholar 

  • Kwerel, S. (1975b). Bounds on the probability of the union and intersection of m events. Advances in Applied Probability, 7, 431–448.

    Article  Google Scholar 

  • Kwon, K., & Cheong, T. (2014). A minimax distribution-free procedure for a newsvendor problem with free shipping. European Journal of Operational Research, 232(1), 234–240.

    Article  Google Scholar 

  • Landau, H. J. (1987). Moments in mathematics. Providence: American Mathematical Society.

    Book  Google Scholar 

  • Lasserre, J. (2008). A semidefinite programming approach to the generalized problem of moments. Mathematical Programming, 112(1), 65–92.

    Article  Google Scholar 

  • Liao, Y., Banerjee, A., & Yan, C. (2011). A distribution-free newsvendor model with balking and lost sales penalty. International Journal of Production Economics, 133(1), 224–227.

    Article  Google Scholar 

  • Mádi-Nagy, G., & Prékopa, A. (2004). On multivariate discrete moment problems and their applications to bounding expectations and probabilities. Mathematics of Operations Research, 29, 229–258.

    Article  Google Scholar 

  • Markov, A. (1884a). On certain applications of algebraic continued fractions. PhD thesis, St. Petersburg (in Russian).

  • Markov, A. (1884b). Démonstration de certaines inégalités de Tchebychev. Mathematische Annalen, 24, 120–180.

    Google Scholar 

  • Markov, A. (1898). Sur les valeurs extremes des integrales et l’interpolation. Mem de l’Acad des Sci St-Petersburg, 8, 69.

    Google Scholar 

  • Markov, A. (1912). Wahrscheinlichkeitsrechnung (Translation from the second Russian ed. (1908) by Heinr, Liebmán, BG Teubner.

  • Markov, A. (1951). Selected works: Number theory, probability theory. Academy of the USSR (in Russian).

  • Morhác, M. (2001). An iterative error-free algorithm to solve Vandermonde systems. Applied Mathematics and Computation, 117(1), 45–54.

    Article  Google Scholar 

  • Markov, T., & Székely, G. (1985). A note on the background of several Bonferroni-Galambos-type inequalities. Journal of applied probability, 22, 836–843.

    Article  Google Scholar 

  • Natarajan, K., Sim, M., & Uichanco, J. (2010). Tractable robust expected utility and risk models for portfolio optimization. Mathematical Finance, 20(4), 695–731.

    Article  Google Scholar 

  • Nevanlinna, R. (1922). Asymptotische Entwicklungen beschränkter Funktionen und das stieltjessche Momentenproblem. Suomalaisen Tiedeakatemian Kustantama.

  • Perakis, G., & Roels, G. (2008). Regret in the newsvendor model with partial information. Operations Research, 56(1), 188–203.

    Article  Google Scholar 

  • Platz, O. (1985). A sharp upper probability bound for the occurrence of at least m out of n events. Journal of applied probability, 22, 978–981.

    Article  Google Scholar 

  • Prékopa, A. (1988). Boole-Bonferroni inequalities and linear programming. Operations Research, 36, 145–162.

    Article  Google Scholar 

  • Prékopa, A. (1990a). Sharp bounds on probabilities using linear programming. Operations Research, 38, 227–239.

    Article  Google Scholar 

  • Prékopa, A. (1990b). The discrete moment problem and linear programming. Discrete Applied Mathematics, 27(3), 235–254.

    Article  Google Scholar 

  • Prékopa, A. (1992). Inequalities on expectations based on the knowledge of multivariate moments. Lecture Notes-Monograph Series, 22, 309–331.

    Article  Google Scholar 

  • Prékopa, A. (1995). Stochastic programming (Vol. 324). Berlin: Springer.

    Book  Google Scholar 

  • Prékopa, A. (1996). A brief introduction to linear programming. Mathematical Scientist, 21(2), 85–111.

    Google Scholar 

  • Prékopa, A. (1998). Bounds on probabilities and expectations using multivariate moments of discrete distributions. Studia Scientiarum Mathematicarum Hungarica, 34(1), 349–378.

    Google Scholar 

  • Prékopa, A. (1999). The use of discrete moment bounds in probabilisticconstrained stochastic programming models. Annals of Operations Research, 85, 21–38.

    Article  Google Scholar 

  • Prékopa, A. (2001). Discrete higher order convex functions and their applications. Generalized Convexity and Generalized Monotonicity, 502, 21–47.

    Article  Google Scholar 

  • Prékopa, A., & Boros, E. (1989). Availability analysis and the method of binomial moments to evaluate reliability of power systems. Proceedings of the workshop on resource planning under uncertainty for electric power systems (pp. 197–215). Dept. of Operations Research, Stanford University.

  • Prékopa, A., & Boros, E. (1991). On the existence of a feasible flow in a stochastic transportation network. Operations Research, 39(1), 119–129.

    Article  Google Scholar 

  • Prékopa, A., Long, J., & Szántai, T. (2004). New bounds and approximations for the probability distribution of the length of the critical path. In K. Marti, Y. Ermoliev, G. Pflug (Eds.), Dynamic stochastic optimization (pp. 293–320). Berlin: Springer.

  • Prékopa, A., & Naumova, M. (2015). The discrete moment method for the numerical integration of piecewise higher order convex functions. Discrete Applied Mathematics (in press).

  • Prékopa, A., & Szedmák, S. (2003). On the numerical solution of the univariate discrete moment problem. Tech. rep., RUTCOR Research Report.

  • Richter, H. (1957). Parameterfreie abschätzung und realisierung von erwartungswerten. Blätter der DGVFM, 3(2), 147–162.

    Article  Google Scholar 

  • Riesz, F. (1909). Sur les opérations fonctionnelles linéaires. Comptes Rendus Academie Sciences Paris, 149, 974–977.

    Google Scholar 

  • Riesz, M. (1911). Sur certains systèmes singuliers d’équations intégrales. Annales Scientifiques de l’École Normale Supérieure, 28, 33–62.

    Google Scholar 

  • Riesz, M. (1923). Sur le probleme des moments. Troisieme note. Arkiv for Matematik, Astronomi ouch Fysik, 16, 1–52.

    Google Scholar 

  • Rogosinsky, W. (1962). Non-negative linear functionals, moment problems, and extremum problems in polynomial spaces. Studies in Mathematical Analysis and Related Topics, 316(324), 121–125.

    Google Scholar 

  • Samuels, S., & Studden, W. (1989). Bonferroni-type probability bounds as an application of the theory of Tchebycheff system. In T. W. Anderson, K. B. Athreya, D. L. Iglehart (Eds.), Probability, statistics and mathematics, papers in honor of Samuel Karlin (vol. 271, p. 289). San Diego, CA: Academic Press.

  • Sawaya, S., & Klaere, S. (2012). Extinction in a branching process: Why some of the fittest strategies cannot guarantee survival. arXiv preprint arXiv:1209.2074

  • Scarf, H. (1958). A min-max solution of an inventory problem. Studies in the Mathematical Theory of Inventory and Production, 10, 201–209.

    Google Scholar 

  • Seneta, E. (1986). An inequality from genetics. Advances in Applied Probability, 18(3), 860–861.

    Article  Google Scholar 

  • Shapiro, A. (2001). On duality theory of conic linear problems. In M. A. Goberna, & M. A. Lopez (Eds.), Semi-infinite programming: Recent advances. Dordrecht: Kluwer.

  • Shohat, J., & Tamarkin, J. (1943). The problem of moments (Vol. 1). Providence: American Mathematical Society.

    Google Scholar 

  • Sobel, M., & Uppuluri, V. (1972). On Bonferroni-type inequalities of the same degree for the probability of unions and intersections. The Annals of Mathematical Statistics, 43, 1549–1558.

    Article  Google Scholar 

  • Spitzbart, A. (1960). A generalization of hermite’s interpolation formula. American Mathematical Monthly, 67, 42–46.

    Article  Google Scholar 

  • Stanley, R. (1989). Log-concave and unimodal sequences in algebra, combinatorics, and geometrya. Annals of the New York Academy of Sciences, 576(1), 500–535.

    Article  Google Scholar 

  • Stieltjes, T. (1884). Quelques recherches sur la théorie des quadratures dites mécaniques. Annales Scientifiques de l’École Normale Supérieure, 1, 409–426.

    Google Scholar 

  • Stieltjes, T. (1885). Note a l’occasion de la reclamation de M. Markoff. Annales Scientifiques de l’École Normale Supérieure, 2, 183–184.

    Google Scholar 

  • Stieltjes, T. (1886). Recherches sur quelques séries semi-convergentes. PhD thesis, Gauthier-Villars.

  • Stieltjes, T. (1895). Recherches sur les fractions continues. Annales de la Faculté des Sciences de Toulouse: Mathématiques, 9(1), A5–A47.

    Article  Google Scholar 

  • Stieltjes, T. (1914, 1918). Oeuvres completes, i, ii. Noordhoff, Groningen.

  • Subasi, E., Subasi, M., & Prékopa, A. (2009). Discrete moment problems with distributions known to be unimodal. Mathematical Inequalities and Applications, 12(3), 587–610.

    Article  Google Scholar 

  • Szántai, T. (1998). Bounds for the reliability of k-out-of-connected-(r, s)-from-(m, n): F lattice systems. In K. Marti & P. Kall (Eds.), Lecture notes in economics and mathematical systems (pp. 223–237), Berlin: Springer.

  • Szántai, T. (2000). Improved bounds and simulation procedures on the value of the multivariate normal probability distribution function. Annals of Operations Research, 100(1–4), 85–101.

    Article  Google Scholar 

  • Tchakaloff, V. (1957). Formules de cubatures mécaniques a coefficients non négatifs. Bulletin des Sciences Mathematiques, 81(2), 123–134.

    Google Scholar 

  • Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38, 49–95.

    Article  Google Scholar 

  • Vandenberghe, L., & Boyd, S. (1999). Applications of semidefinite programming. Applied Numerical Mathematics, 29(3), 283–299.

    Article  Google Scholar 

  • Vandenberghe, L., Boyd, S., & Comanor, K. (2007). Generalized Chebyshev bounds via semidefinite programming. SIAM Review, 49(1), 52–64.

    Article  Google Scholar 

  • Varadhan, S. (2008). Large deviations. The Annals of Probability, 36(2), 397–419.

    Article  Google Scholar 

  • Wheeler, J., & Gordon, R. (1970). Bounds for averages using moment constraints. Mathematics in Science and Engineering, 71, 99–128.

    Article  Google Scholar 

  • Wong, M., & Zhang, S. (2013). Computing best bounds for nonlinear risk measures with partial information. Insurance: Mathematics and Economics, 52(2), 204–212.

    Google Scholar 

  • Zuluaga, L., Peña, J., & Du, D. (2009). Third-order extensions of Lo’s semiparametric bound for European call options. European Journal of Operational Research, 198(2), 557–570.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF grant CMMI-0856663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Prékopa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prékopa, A., Ninh, A. & Alexe, G. On the relationship between the discrete and continuous bounding moment problems and their numerical solutions. Ann Oper Res 238, 521–575 (2016). https://doi.org/10.1007/s10479-015-1995-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-1995-1

Keywords

Navigation