Skip to main content
Log in

Quasilinear PDEs, Interpolation Spaces and Hölderian mappings

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

As in the work of Tartar [59], we develop here some new results on nonlinear interpolation of α-Hölderian mappings between normed spaces, by studying the action of the mappings on K-functionals and between interpolation spaces with logarithm functions. We apply these results to obtain some regularity results on the gradient of the solutions to quasilinear equations of the form

$$-\text{div}(\widehat{a}(\nabla u))+V(u)=f,$$

where V is a nonlinear potential and f belongs to non-standard spaces like Lorentz–Zygmund spaces. We show several results; for instance, that the mapping \(\cal{T}:\cal{T}f=\nabla u\) is locally or globally α-Hölderian under suitable values of α and appropriate hypotheses on V and â.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ahmed, A. Fiorenza and A. Hafeez, Some interpolation formulae for grand and small Lorentz spaces, Mediterr. J. Math., 17 (2020), Article 57, 21 pp.

  2. I. Ahmed, A. Fiorenza, M. R. Formica, A. Gogatishvili and J. M. Rakotoson, Some new results related to Lorentz GΓ spaces and interpolation, J. Math. Anal. Appl., 483 (2020), 123623, 24 pp.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Alberico, G. di Blasio and F. Feo, Estimates for fully anisotropic elliptic equations with a zero order term, Nonlinear Anal., 181 (2019), 249–264.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Alberico, I. Chlebicka, A. Cianchi and A. Zatorska-Goldstein, Fully anisotropic elliptic problems with minimally integrable data, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 186, 50 pp.

  5. C. Bennett and K. Rudnick, On Lorentz–Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175 (1980), 67 pp.

  6. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press (Boston, 1988).

    MATH  Google Scholar 

  7. P. Benilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241–274.

    MathSciNet  MATH  Google Scholar 

  8. J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag (Berlin–New York, 1976).

    MATH  Google Scholar 

  9. D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137–1152.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Boccardo, D. Giachetti J. I. Diaz and F. Murat, Existence of a solution for a weaker form of nonlinear elliptic equation, in: Recent Advances in Nonlinear Elliptic and Parabolic Problems (Nancy, 1988), Pitman Res. Notes Math. Ser., vol. 208, Longman Sci. Tech. (Harlow, 1989), pp. 229–246.

    MATH  Google Scholar 

  11. M. Bendhmane and P. Whittbold, Renormalized solutions of nonlinear elliptic equations with variable exponents and L1 data Nonlinear Anal. Theory Methods Appl., 70 (2009), 567–583.

    Article  Google Scholar 

  12. Y. A. Brudnyĭ and N. Y. Krugljak, Interpolation Functors and Interpolations Spaces, vol. I, North-Holland (Amsterdam, 1991).

    MATH  Google Scholar 

  13. J. Carillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 156 (1999), 93–121.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Cianchi and V. Maz’ya, Global boundedness of the gradient of a class of nonlinear elliptic systems, Arch. Ration. Mech. Anal., 212 (2014), 129–177.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Cianchi and V. Maz’ya, Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems, J. Eur. Math. Soc., 16 (2014), 571–595.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Springer–Birkhäauser (Basel, 2013).

    Book  MATH  Google Scholar 

  17. J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. 1. Elliptic Equations, Res. Notes in Math., vol. 106, Pitman (Boston, MA, 1985).

    Google Scholar 

  18. J. I. Díaz, D. Gómez, J. M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: The weighted space approach, Discrete Contin. Dyn. Syst., 38 (2018), 509–546.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer (Berlin, 2017).

    MATH  Google Scholar 

  20. G. Di Fratta and A. Fiorenza, A unified divergent approach to Hardy–Poincarein-equalities in classical and variable Sobolev spaces, J. Funct. Anal., 283 (2022), Paper No. 109552, 21 pp.

  21. R. Diperna and P. L. Lions, On the Cauchy problem for the Boltzmann equation, global existence and weak stability, Ann. of Math., 130 (1989), 321–366.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. El Hamidi and J. M. Rakotoson, Compactness and quasilinear problems with critical exponents, Differ. Integral Equ., 18 (2005), 1201–1220.

    MathSciNet  MATH  Google Scholar 

  23. W. D. Evans, B. Opic and L. Pick, Real interpolation with logarithmic functors, J. Inequal. Appl., 7 (2002), 187–269.

    MathSciNet  MATH  Google Scholar 

  24. A. Ferone, M. A. Jalal, J. M. Rakotoson and R. Volpicelli, Some refinements of the Hodge decomposition and application to Neumann problems and uniqueness Adv. Math. Sci. Appl., 11 (2001), 17–37.

    MathSciNet  MATH  Google Scholar 

  25. V. Ferone and F. Murat, Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces J. J. Differential Equations, 256 (2014), 577–608.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Ferone, M. R. Posteraro and J. M. Rakotoson, L-estimates for nonlinear elliptic problems with p-growth in the gradient, J. Inequal. Appl., 3 (1999), 109–125.

    MathSciNet  MATH  Google Scholar 

  27. A. Fiorenza, M. R. Formica, A. Gogatishvili, K. Kopaliani and J. M. Rakotoson, Characterization of interpolation between grand, small or classical Lebesgue spaces, Nonlinear Anal., 177 (2018), 422–453.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Fiorenza, A. Gogatishvili, A. Nekvinda and J. M. Rakotoson, Remarks on compactness results for variable exponent spaces Lp(·), J. Math. Pures Appl., 157 (2022), 136–144.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Fiorenza, M. R. Formica and J. M. Rakotoson, Pointwise estimates for GΓ-functions and applications, Differential Integral Equations, 30 (2017), 809–824.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Fiorenza and J. M. Rakotoson, Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and their applications, Calc. Var. Partial Differential Equations, 25 (2005), 187–203.

    Article  MATH  Google Scholar 

  31. A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right-hand side in L1, Studia Math., 127 (1998), 223–231.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Fragalà, F. Gazzola and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 21 (2004) 715–731.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Gilbarg and N-S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (Berlin, 1983).

    MATH  Google Scholar 

  34. A. Gogatishvili, B. Opic and W. Trebels, Limiting reiteration for real interpolation with slowly varying functions, Math. Nachr., 278 (2005), 86–107.

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Grenon, F. Murat and A. Porretta, A priori estimates and existence for elliptic equations with gradient dependent terms Ann. Sci. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 137–205.

    MathSciNet  MATH  Google Scholar 

  36. A. Kufner, Weighted Sobolev Spaces, Wiley (New York, 1985).

    MATH  Google Scholar 

  37. J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod et Gauthier-Villars (Paris, 1969).

    MATH  Google Scholar 

  38. W. B. Liu and J. W. Barett, Finite element approximation of the some degenerate monotone quasilinear elliptic systems, SIAM J. Numer. Anal., 33 (1996), 88–106.

    Article  MathSciNet  Google Scholar 

  39. L. Maligranda, Interpolation of locally Hölder operators, Studia Math., 78 (1984), 289–296.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Maligranda, On interpolation of nonlinear operators, Comment. Math. Prace Mat., 28 (1989), 253–275.

    MathSciNet  MATH  Google Scholar 

  41. L. Maligranda, A Bibliography on “Interpolation of Operators and Applications” (1926–1990), Högskolan i Luleå(Luleå, 1990).

    Google Scholar 

  42. L. Maligranda, L.-E. Persson and J. Wyller, Interpolation and partial differential equations, J. Math. Phys., 35 (1994), 5035–5046.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Miranville, A. Pietrus and J. M. Rakotoson, Equivalence of formulations and uniqueness in a T-set for quasilinear equations with measures as data, Nonlinear Anal., 46 (2001), 609–627.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj), 12 (1970), 325–334.

    MathSciNet  MATH  Google Scholar 

  45. J. Peetre, A Theory of Interpolation of Normed Spaces, Notas Mat., No. 39, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas (Rio de Janeiro, 1968).

    MATH  Google Scholar 

  46. J. Peetre, A new approach in interpolation spaces, Studia Math., 34 (1970), 23–42.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. M. Rakotoson, Réarrangement relatif, Un instrument d’estimations dans les problèmes aux limites, Math. Appl. (Berlin), vol. 64, Springer-Verlag (Berlin, 2008).

    MATH  Google Scholar 

  48. J. M. Rakotoson, Réarrangement relatif dans les équations elliptiques quasi-linéaires avec un second membre distribution: Application à un théorème d’existence et de régularite, J. Differential Equations, 66 (1987), 391–419.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. M. Rakotoson, Quasilinear elliptic problems with measures as data, Differential Integral Equations, 4 (1991), 449–457.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. M. Rakotoson, Uniqueness of renormalized solutions in a T-set for the L1-data problem and link between various formulations, Indiana Univ. Math. J., 43 (1994), 685–702.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. M. Rakotoson, Equations et inéquations aves des données mesures, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 105–107.

    MathSciNet  MATH  Google Scholar 

  52. J. M. Rakotoson, Generalized solutions in a new type of sets for problems with measures as data, Differential Integral Equations, 6 (1993), 27–36.

    Article  MathSciNet  MATH  Google Scholar 

  53. J. M. Rakotoson, Propriétés qualitatives de solutions d’équation à donnée mesure dans un T-ensemble, C. R. Acad. Sci. Paris Sér. I Math., 323 (1996), 335–340.

    MathSciNet  MATH  Google Scholar 

  54. J. M. Rakotoson, Notion of ℝ-solutions and some measure data equations, Course in Naples, May–June 2000.

  55. J. M. Rakotoson, Réarrangement relatif revisité, hal-03277063 (2021).

  56. B. Simon, Thèse: Réarrangement relatif sur un espace mesuré et applications, Universitie de Poitiers (1994).

  57. L. Tartar, An introduction to Sobolev Spaces and Interpolation Spaces, Springer-Verlag (Berlin, 2007).

    MATH  Google Scholar 

  58. L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1 (1998), 479–500.

    MathSciNet  MATH  Google Scholar 

  59. L. Tartar, Interpolation non linéaire et régularité, J. Funct. Anal., 9 (1972), 469–489.

    Article  MATH  Google Scholar 

  60. M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3–24.

    MathSciNet  MATH  Google Scholar 

  61. J. Vétois, Decay estimates and a vanishing phenomenon for the solutions of critical anisotropic equations, Adv. Math., 284 (2015), 122–158.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Gogatishvili started work on this project during his visit to J. M. Rakotoson to the Laboratory of Mathematics of the University of Poitiers, France, in April 2022. He thanks for his generous hospitality and helpful atmosphere during the visit. He has been partially supported by the Czech Academy of Sciences (RVO 67985840), by the Czech Science Foundation (GAČR), grant no. 23-04720S, by the Shota Rustaveli National Science Foundation (SRNSF), grant no. FR-21-12353, and by the grant Minstry of Education and Science of the Republic of Kazakhstan (project no. AP14869887).

M.R. Formica is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and member of the UMI group “Teoria dell’Approssimazione e Applicazioni (T.A.A.)” and is partially supported by the INdAM-GNAMPA project, Risultati di regolarità per PDEs in spazi di funzione non-standard, codice CUP_E53C22001930001 and partially supported by University of Naples “Parthenope”, Dept. of Economic and Legal Studies, project CoRNDiS, DM MUR 737/2021, CUP I55F21003620001.

The authors thank the anonymous referee for the careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fiorenza.

Additional information

Dedicated to Oleg V. Besov on the occasion of his 90th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Fiorenza, A., Formica, M.R. et al. Quasilinear PDEs, Interpolation Spaces and Hölderian mappings. Anal Math 49, 895–950 (2023). https://doi.org/10.1007/s10476-023-0245-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-023-0245-z

Key words and phrases

Mathematics Subject Classification

Navigation