Skip to main content
Log in

Boundedness of the Hilbert Transform in Besov Spaces

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

Boundedness conditions are found for the Hilbert transform H in Besov spaces with Muckenhoupt weights. The operator H in this situation acts on subclasses of functions from Hardy spaces. The results are obtained by representing the Hilbert transform H via Riemann–Liouville operators of fractional integration on ℝ, on the norms of images and pre-images of which independent estimates are established in the paper. Separately, a boundedness criterion is given for the transform H in weighted Besov and Triebel–Lizorkin spaces restricted to the subclass of Schwartz functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal., 14 (1983), 834–844.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, vol. 21, SIAM (Philadelphia, PA, 1975).

    Book  MATH  Google Scholar 

  3. K. I. Babenko, On conjugate functions, Dokl. Nauk SSSR (N.S.), 62 (1948), 157–160 (in Russian).

    MathSciNet  Google Scholar 

  4. G. Battle, A block spin construction of ondelettes. Part I: Lemarie functions, Comm. Math. Phys., 110 (1987), 601–615.

    Article  MathSciNet  Google Scholar 

  5. G. Battle, A block spin construction of ondelettes, Part II: QFT connection, Comm. Math. Phys., 114 (1988), 93–102.

    Article  MathSciNet  Google Scholar 

  6. C. K. Chui, An Introduction to Wavelets, Academic Press (New York, 1992).

    MATH  Google Scholar 

  7. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 61, SIAM (Philadelphia, PA, 1992).

    Book  MATH  Google Scholar 

  8. L. Grafakos, Modern Fourier Analysis, Graduate Texts in Math., vol. 250, Springer (New York, 2009).

    Google Scholar 

  9. D. Haroske and I. Piotrowska, Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis, Math. Nachr., 281 (2008), 1476–1494.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Haroske and L. Skrzypczak, Entropy and approximation numbers of embeddings in function spaces with Muckenhoupt weights. I, Rev. Mat. Complut., 21 (2008), 135–177.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. D. Hung, L. D. Ky and T. T. Quang, Norm of the Hausdorff operator on the real Hardy space H1(ℝ), Complex. Anal. Oper. Theory, 12 (2018), 235–245.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. P. Hytonen, The two-weight inequality for the Hilbert transform with general measures, Proc. London Math. Soc., 117 (2018), 483–526.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227–251.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. T. Lacey, E. T. Sawyer, C.-Y. Shen and I. Uriarte–Tuero, Two-weight inequality for the Hilbert transform: a real variable characterization. I, Duke Math. J., 163 (2014), 2795–2820.

    MathSciNet  MATH  Google Scholar 

  15. M. T. Lacey, E. T. Sawyer, C.-Y. Shen and I. Uriarte–Tuero, Two-weight inequality for the Hilbert transform: a real variable characterization. II, Duke Math. J., 163 (2014), 2821–2840.

    MathSciNet  MATH  Google Scholar 

  16. P. G. Lemarié, Ondelettes à localisation exponentielle, J. Math. Pures Appl., 67 (1988), 227–236.

    MathSciNet  MATH  Google Scholar 

  17. E. Liflyand, Weighted estimates for the discrete Hilbert transform, in: Methods of Fourier Analysis and Approximation Theory, Appl. Numer. Harmon. Anal., Birkhauser/Springer (Cham, 2016), pp. 59–69.

    Chapter  Google Scholar 

  18. E. Liflyand and F. Móricz, The Hausdorff operator is bounded on the real Hardy space H1(ℝ), Proc. Amer. Math. Soc., 128 (1999), 1391–1396.

    Article  MATH  Google Scholar 

  19. I. Ya. Novikov and S. B. Stechkin, Fundamentals of wavelet theory, Russ. Math. Surveys, 53 (1998), 1159–1231.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Riesz, Sur les fonctions conjugées, Math Z., 27 (1928), 218–244.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Roudenko, Matrix-weighted Besov spaces, Trans. Amer. Math. Soc., 355 (2003), 273–314.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. G. Samko, Hypersingular Integrals and Their Applications, CRC Press (London, 2001).

    Book  MATH  Google Scholar 

  23. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers (1993).

  24. W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of B spq and F spq type, Z. Anal. Anwend., 14 (1995), 105–140.

    Article  MATH  Google Scholar 

  25. E. M. Stein, Harmonic Analysis, Princeton University Press (Princeton, 1993).

    Google Scholar 

  26. E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of Hp-spaces, Acta Math., 103 (1960), 25–62.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. D. Stepanov, On the boundedness of the Hilbert transform from weighted Sobolev space to weighted Lebesgue space, J. Fourier Anal. Appl., 28 (2022), Art. No. 46, 17 pp.

  28. V. D. Stepanov and S. Y. Tikhonov, Two power-weight inequalities for the Hilbert transform on the cones of monotone functions, Complex Var. Elliptic Equ., 56 (2011), 1039–1047.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Titchmarsh, Reciprocal formulae involving series and integrals Math. Z., 25 (1926), 321–347.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev., 42 (2000), 43–67.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Unser and T. Blu, Construction of fractional spline wavelet bases, in: Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet applications in signal and image processing VII (Denver, CO, 1999), Proceedings of the SPIE, vol. 3183, SPIE (1999), pp. 422–431.

  32. E. P. Ushakova, Spline wavelet bases in function spaces with Muckenhoupt weights, Rev. Mat. Complut., 33 (2020), 125–160.

    Article  MathSciNet  MATH  Google Scholar 

  33. E. P. Ushakova, Spline wavelet decomposition in weighted function spaces, Proc. Steklov Inst. Math., 312 (2021), 301–324.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. P. Ushakova and K. E. Ushakova, Localisation property of Battle–Lemarié wavelets’ sums, J. Math. Anal. Appl., 461 (2018), 176–197.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. P. Ushakova, The images of integration operators in weighted function spaces, Sib. Math. J., 63 (2022), 1181–1207.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. P. Ushakova and K. E. Ushakova, Norm inequalities with fractional integrals, Algebra i Analiz, 35 (2023), 185–219.

    MATH  Google Scholar 

  37. A.-T. Vandermonde, Mémoire sur des irrationnelles de différens ordres avec une application au cercle, Mém. Acad. Roy. Sci. Paris (1772), 489–498.

Download references

Acknowledgements

The author thanks a reviewer for careful proofreading of the paper and valuable comments, which significantly improved the results of the paper.

For providing the proof of the formula (4.14), the author is grateful to Professor V. I. Chebotarev, Head of Laboratory of Approximate Methods and Functional Analysis of the Computing Center of Far Eastern Branch of Russian Academy of Sciences in Khabarovsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Ushakova.

Additional information

Dedicated to Professor O. V. Besov on the occasion of his 90th birthday

The work of the author presented in Sections 5 and 6 was supported by the Russian Science Foundation (Grant no. 19-11-00087, https://rscf.ru/project/19-11-00087/) and performed at the Steklov Institute of Mathematics of Russian Academy of Sciences. The work presented in the rest part of the paper was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation to the Computing Center of the Far Eastern Branch of the Russian Academy of Sciences and V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakova, E.P. Boundedness of the Hilbert Transform in Besov Spaces. Anal Math 49, 1137–1174 (2023). https://doi.org/10.1007/s10476-023-0242-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-023-0242-2

Key words and phrases

Mathematics Subject Classification

Navigation