Skip to main content
Log in

Noncommutative potential theory

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

We propose to view hermitian metrics on trivial holomorphic vector bundles E → Ω as noncommutative analogs of functions defined on the base Ω, and curvature as the notion corresponding to the Laplace operator or ∂∂̅. We discuss noncommutative generalizations of basic results of ordinary potential theory, mean value properties, maximum principle, Harnack inequality, and the solvability of Dirichlet problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Axelrod, S. Della Pietra and E. Witten, Geometric quantization of Chern–Simons gauge theory, J. Diff. Geom., 33 (1991), 787–902.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Berman and J. Keller, Bergman Geodesics, in: Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics, Lecture Notes in Math., Vol. 2038, Springer (Heidelberg, 2012), pp. 283–302.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Berndtsson, Curvature of vector bundles associated to holomorphic fibrations. Ann. of Math. (2), 169 (2009), 531–160.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. R. Coifman and S. Semmes, Interpolation of Banach spaces, Perron processes, and Yang–Mills, Amer. Math. J., 115 (1993), 243–278.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Conway, A Course in Functional Analysis, 2nd ed., Springer (New York, 1990).

    MATH  Google Scholar 

  6. A. Devinatz, The factorization of operator valued functions, Ann. of Math., 73 (1961), 458–495.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Donaldson, Boundary value problems for Yang–Mills fields, J. Geom. Phys., 8 (1992), 89–122.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. G. Douglas, On factoring positive operator functions, J. Math. Mech., 16 (1966), 119–126.

    MathSciNet  MATH  Google Scholar 

  9. H. Helson, Lectures on Invariant Subspaces, Academic Press (New York, 1964).

    MATH  Google Scholar 

  10. R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press (New York, N.Y., 2013).

    Google Scholar 

  11. L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427–474.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Lempert, A maximum principle for Hermitian (and other) metrics, Proc. Amer. Math. Soc., 143 (2015), 2193–2200.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Lempert, Extrapolation, a technique to estimate, in: Functional Analysis, Harmonic Analysis, and Image Processing: a Collection of Papers in Honor of Björn Jawerth, Contemp. Math., 693, Amer. Math. Soc. (Providence, RI, 2017), pp. 271–281.

    MathSciNet  Google Scholar 

  14. L. Lempert, Analytic cohomology groups of infinite dimensional complex manifolds, J. Math. Anal. Appl., 445 (2017), 1428–1446.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Lempert and R. Szőke, Direct images, fields of Hilbert spaces, and geometric quantization, Comm. Math. Phys., 327 (2014), 49–99.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. H. Lieb and M. B. Ruskai, Some operator inequalities of the Schwarz type, Adv. Math., 12 (1974), 269–273.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Privalov, Sur les fonctions conjugées, Bull. Soc. Math. France, 44 (1916), 100–103.

    MathSciNet  Google Scholar 

  18. C. E. Rickart, General Theory of Banach Algebras, The University Series in Higher Mathematics, D. van Nostrand (Princeton, N.J.–Toronto–London–New York, 1960).

    Google Scholar 

  19. F. Riesz and B. Sz. -Nagy, Le¸cons d’analyse fonctionelle, 4th ed., Gauthiers–Villars (Paris, 1965).

    Google Scholar 

  20. R. Rochberg, Interpolation of Banach spaces and negatively curved vector bundles, Pacific J. Math., 110 (1984), 355–376.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Rosenblum, Vectorial Toeplitz operators and the Fejér–Riesz theorem, J. Math. Anal. Appl., 23 (1968), 139–147.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Sz. -Nagy and C. Foiaş, Sur les contractions de l’espace de Hilbert IX. Factorisation de la fonction caractéristique. Sous–espaces invariants, Acta Sci. Math. (Szeged), 25 (1964), 283–316.

    MathSciNet  MATH  Google Scholar 

  23. N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes, Acta Math., 98 (1957), 111–150.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lempert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lempert, L. Noncommutative potential theory. Anal Math 43, 603–627 (2017). https://doi.org/10.1007/s10476-017-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-017-0505-x

Keywords

Mathematics Subject Classification

Navigation