Skip to main content
Log in

Log-concavity and Turán-type inequalities for the generalized hypergeometric function

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The paper studies logarithmic convexity and concavity of the generalized hypergeometric function with respect to the simultaneous shift of several parameters. We use integral representations and properties of Meijer’s G function to prove log-convexity. When all parameters are shifted we use series manipulations to examine the power series coefficients of the generalized Turánian formed by the generalized hypergeometric function. In cases when all zeros of the generalized hypergeometric function are real, we further explore the consequences of the extended Laguerre inequalities and formulate a conjecture about reality of zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Á. Baricz, Turán type inequalities for hypergeometric functions, Proc. Amer. Math. Soc., 136 (2008), 3223–3229.

    Article  MathSciNet  MATH  Google Scholar 

  2. Á. Baricz and M. E. H. Ismail, Turán type inequalities for Tricomi confluent hypergeometric functions, Constr. Approx., 37 (2013), 195–221.

    Article  MathSciNet  MATH  Google Scholar 

  3. Á. Baricz and S. Koumandos, Turán-type inequalities for some Lommel functions of the first kind, Proc. Edinburgh Math. Soc. (2016), DOI:10.1017/S0013091515000413.

    Google Scholar 

  4. Á. Baricz, S. Ponnusamy and S. Singh, Turán type inequalities for Struve functions, J. Math. Anal. Appl., (2016), DOI:10.1016/j.jmaa.2016.08.026.

    Google Scholar 

  5. R. W. Barnard, M. Gordy and K. C. Richards, A note on Turán type and mean inequalities for the Kummer function, J. Math. Anal. Appl., 349 (2009), 259–263.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Csordas and R. S. Varga, Necessary and sufficient conditions and the Riemann hypothesis, Adv. Appl. Math., 11, (1990), 328–357.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31 (2000), 397–415.

    MathSciNet  MATH  Google Scholar 

  8. K. Driver, K. Jordaan and A. Martínez-Finkelshtein, Pólya frequency sequences and real zeros of some 3F2 polynomials, J. Math. Anal. Appl., 332 (2007), 1045–1055.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. I. Kalmykov and D. B. Karp, Logarithmic concavity of series in gamma ratios, Russian Mathematics, 58 (2014), 63–68.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. I. Kalmykov and D. B. Karp, Log-convexity and log-concavity for series in gamma ratios and applications, J. Math. Anal. Appl., 406 (2013), 400–418.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. I. Kalmykov and D. B. Karp, Log-concavity for series in reciprocal gamma functions and applications, Integral Transforms Spec. Funct., 24 (2013), 859–872.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. B. Karp, Turán’s inequality for the Kummer function of the phase shift of two parameters, J. Math. Sci., 178 (2011), 178–186.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. B. Karp, Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials, J. Math. Sci., 193 (2013), 106–114.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Karp, Representations and inequalities for generalized hypergeometric functions, J. Math. Sci., 207, (2015), 885–897.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Karp, Normalized incomplete beta function: log-concavity in parameters and other properties, J. Math. Sci., 217 (2016), 91–107.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Karp and J. L. López, Representations of hypergeometric functions for arbitrary values of parameters and their use, submitted to J. Approx. Theory, preprint:arXiv:1609.02340v1.

  17. D. Karp and E. Prilepkina, Hypergeometric functions as generalized Stieltjes transforms, J. Math. Anal. Appl., 393 (2012), 348–359.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Karp and E. Prilepkina, Completely monotonic gamma ratio and infinitely divisible H-function of Fox, Computational Methods Funct. Theory, 16 (2016), 135–153.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Karp and S. M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions, J. Math. Anal. Appl., 364 (2010), 384–394.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Ki and Y.-O. Kim, On the zeros of some generalized hypergeometric functions, J. Math. Anal. Appl., 243 (2000), 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Koumandos, On the log-concavity of the fractional integral of the sine function, J. Approx. Theory 210 (2016), 30–40.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Koumandos and H. L. Pedersen, On the Laplace transform of absolutely monotonic functions, preprint (2016), arXiv:1612.02257v1.

    MATH  Google Scholar 

  23. B. Ya. Levin, Lectures on Entire Functions, Translations of Mathematical Monographs, Vol. 150, American Mathematical Society (Providence, RI, 1996).

    Google Scholar 

  24. A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, second edition, Springer (2011).

    Book  MATH  Google Scholar 

  25. K. S. Miller and S. Samko, Completely monotonic functions, Integral Transforms Spec. Funct., 12 (2001), 389–402.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. S. Mitrinović, J. E. Pecarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers (Dordrecht, 1993).

    Book  MATH  Google Scholar 

  27. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge University Press (2010).

    MATH  Google Scholar 

  28. M. L. Patrick, Extensions of inequalities of the Laguerre and Turán type, Pacific J. Math., 44 (1973), 675–682.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. St. P. Richards, Totally positive kernels, Pólya frequency functions and generalised hypergeometric series, Linear Algebra Appl., 137/138 (1990), 467–478.

    Article  MATH  Google Scholar 

  30. R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions. Theory and Applications, Studies in Mathematics, vol. 37, Walter de Gruyter (Berlin, 2010).

  31. E. C. Titchmarsh, The Theory of Functions, second ed., Oxford Univsity Press (London, 1939).

    MATH  Google Scholar 

  32. D. V. Widder, The Laplace transform, Princeton University Press (1946).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kalmykov.

Additional information

The first author was supported by NSFC (grant 11650110426).

The second author was supported by the Ministry of Education of the Russian Federation (project 1398.2014) and by the Russian Foundation for Basic Research (project 15-56-53032).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmykov, S.I., Karp, D.B. Log-concavity and Turán-type inequalities for the generalized hypergeometric function. Anal Math 43, 567–580 (2017). https://doi.org/10.1007/s10476-017-0503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10476-017-0503-z

Keywords

Mathematics Subject Classification

Navigation