Skip to main content
Log in

Monochromatic Partitions In Local Edge Colorings

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

An edge coloring of a graph is a local r-coloring if the edges incident to any vertex are colored with at most r distinct colors. In this paper, generalizing our earlier work, we study the following problem. Given a family of graphs \(\mathcal {F} \) (for example matchings, paths, cycles, powers of cycles and paths, connected subgraphs) and fixed positive integers s, r, at least how many vertices can be covered by the vertices of no more than s monochromatic members of \(\mathcal {F} \) in every local r-coloring of \(K_n\). Several problems and results are presented. In particular, we prove the following two results. First, if n is sufficiently large then in any local r-coloring of the edges of \(K_n\), the vertex set can be partitioned by the vertices of at most r monochromatic trees, which is sharp for local r-colorings (unlike for ordinary r-colorings according to the Ryser conjecture). Second, we show that we can partition the vertex set with at most O(r log r) monochromatic cycles in every local r-coloring of \(K_n\). This answers a question of Conlon and Stein and slightly generalizes one of my favorite joint results with Endre (and with Gyárfás and Ruszinkó).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, P.: Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles. Combin. Probab. Comput. 17, 471–486 (2008)

    Article  MathSciNet  Google Scholar 

  2. B. Andrásfai, Remarks on a paper of Gerencsér and Gyárfás, Ann. Univ. Sci. Eötvös, Budapest., 13 (1970), 103–107

  3. D. Bal and L. DeBiasio, Partitioning random graphs into monochromatic components, Electron. J. Combin., 24 (2017), Paper No. 1.18, 25 pp

  4. S. Bessy and S. Thomassé, Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture, J. Combin. Theory, Ser. B, 100 (2010), 176–180

  5. Bielak, H.: Local Ramsey numbers for some graphs. Discrete Math. 266, 87–99 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bierbrauer, J., Brandis, A.: On generalized Ramsey numbers for trees. Combinatorica 5, 95–107 (1985)

    Article  MathSciNet  Google Scholar 

  7. Bierbrauer, J., Gyárfás, A.: On \((n, k)\)-colorings of complete graphs. Congressus Num. 58, 123–139 (1987)

    MATH  Google Scholar 

  8. Bollobás, B., Gyárfás, A.: Highly connected monochromatic subgraphs. Discrete Math. 308, 1722–1725 (2008)

    Article  MathSciNet  Google Scholar 

  9. Y. Caro and Zs. Tuza, On \(k\)-local and \(k\)-mean colorings of graphs and hypergraphs, Quart. J. Math. Oxford, Ser. (2), 44 (1993), 385–398

  10. Conlon, D., Stein, M.: Monochromatic cycle partitions in local edge colorings. J. Graph Theory 81, 134–145 (2016)

    Article  MathSciNet  Google Scholar 

  11. P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and trees, J. Combin. Theory, Ser. B, 51 (1991), 90–95

  12. Füredi, Z.: Maximum degree and fractional matchings in uniform hypergraphs. Combinatorica 1, 155–162 (1981)

    Article  MathSciNet  Google Scholar 

  13. Füredi, Z., Gyárfás, A.: Covering \(t\)-element sets by partitions. European J. Combin. 12, 483–489 (1991)

    Article  MathSciNet  Google Scholar 

  14. L. Gerencsér and A. Gyárfás, On Ramsey type problems, Ann. Univ. Sci. Eötvös, Budapest., 10 (1967), 167–170

  15. A. Gyárfás, Partition coverings and blocking sets in hypergraphs, Communications of the Computer and Automation Institute of the Hungarian Academy of Sciences, 71 (1977), 62 pp. (in Hungarian)

  16. Gyárfás, A., Lehel, J., Schelp, R.H.: and Zs. Tuza, Ramsey numbers for local colorings, Graphs Combin. 3, 267–277 (1987)

    Article  Google Scholar 

  17. A. Gyárfás, J. Lehel, J. Nesetril, V. Rödl, R. H. Schelp, and Zs. Tuza, Local \(k\)-colorings of graphs and hypergraphs, J. Combin. Theory, Ser. B, 43 (1987), 127–139

  18. A. Gyárfás, M. Ruszinkó, G.,N. Sárközy, and E. Szemerédi, An improved bound for the monochromatic cycle partition number, J. Combin. Theory, Ser. B, 96 (2006), 855–873

  19. A. Gyárfás, M. Ruszinkó, G.,N. Sárközy, and E. Szemerédi, One-sided coverings of colored complete bipartite graphs, in: Topics in Discrete Mathematics (dedicated to J. Nesetril on his 60th birthday), Algorithms and Combinatorics 26 (M. Klazar et al., eds.), Springer (Berlin, 2006), pp. 133–154

  20. A. Gyárfás, M. Ruszinkó, G.,N. Sárközy, and E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica, 27 (2007), 35–69

  21. A. Gyárfás, M. Ruszinkó, G.,N. Sárközy, and E. Szemerédi, Tripartite Ramsey numbers for paths, J. Graph Theory, 55 (2007), 164–174

  22. A. Gyárfás, M. Ruszinkó, G.,N. Sárközy, and E. Szemerédi, Partitioning 3-colored complete graphs into three monochromatic cycles, Electron. J. Combin., 18 (2011), Paper No. 53, 16 pp

  23. A. Gyárfás ansd G.,N. Sárközy, Size of monochromatic components in local edge colorings, Discrete Math., 308 (2008), 2620–2622

  24. A. Gyárfás, G.,N. Sárközy, and S. Selkow, Coverings by few monochromatic pieces – a transition between two Ramsey problems, Graphs Combin., 31 (2015), 131–140

  25. A. Gyárfás, G.,N. Sárközy, and E. Szemerédi, The Ramsey number of diamond-matchings and loose cycles in hypergraphs, Electron. J. Combin., 15 (1), (2008), Paper No. 126, 14 pp

  26. A. Gyárfás, G.,N. Sárközy, and E. Szemerédi, Monochromatic matchings in the shadow graph of almost completev hypergraphs, Ann. Combin., 14 (2010), 245–249

  27. A. Gyárfás, G.,N. Sárközy, and E. Szemerédi, Stability of the path-path Ramsey number, Discrete Math., 309 (2009), 4590–4595

  28. A. Gyárfás, G.,N. Sárközy, and E. Szemerédi, Long monochromatic Berge cycles in colored 4-unform hypergraphs, Graphs Combin., 26 (2010), 71–76

  29. A. Gyárfás, G.,N. Sárközy, and E. Szemerédi, Monochromatic Hamiltonian 3-tight Berge cycles in 2-colored 4-uniform hypergraphs, J. Graph Theory, 63 (2010), 288–299

  30. P. Haxell and Y. Kohayakawa, Partitioning by monochromatic trees, J. Combin. Theory, Ser. B, 68 (1996), 218–222

  31. J. R. Henderson, Permutation Decomposition of (0-1)-Matrices and Decomposition Transversals, Ph.D. thesis, Caltech (1971)

  32. Lang, R., Stein, M.: Local colourings and monochromatic partitions in complete bipartite graphs. European J. Combin. 60, 42–54 (2017)

    Article  MathSciNet  Google Scholar 

  33. Liu, H., Morris, R., Prince, N.: Highly connected monochromatic subgraphs of multicoloured graphs. J. Graph Theory 61, 22–44 (2009)

    Article  MathSciNet  Google Scholar 

  34. Luczak, T., Rödl, V., Szemerédi, E.: Partitioning two-colored complete graphs into two monochromatic cycles. Combin. Probab. Comput. 7, 423–436 (1998)

    Article  MathSciNet  Google Scholar 

  35. D. Mubayi, Generalizing the Ramsey problem through diameter, Electron. J. Combin., 9 (2002), Paper No. 41

  36. A. Pokrovskiy, Partitioning edge-coloured complete graphs into monochromatic cycles and paths, J. Combin. Theory, Ser. B, 106 (2014), 70–97

  37. A. Pokrovskiy, Partitioning a graph into a cycle and a sparse graph, arXiv:1607.03348

  38. S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin.,, (2002), Dynamic Survey 1, 30 pp

  39. Ruciński, A., Truszczyński, M.: A note on local colorings of graphs. Discrete Math. 164, 251–255 (1997)

    Article  MathSciNet  Google Scholar 

  40. Schelp, R.H.: Local and mean \(k\)-Ramsey numbers for complete graphs. J. Graph Theory 24, 201–203 (1997)

    Article  MathSciNet  Google Scholar 

  41. M. Truszczyński, Generalized local colorings of graphs, J. Combin. Theory, Ser. B, 54 (1992), 178–188

  42. M. Truszczynski and Zs. Tuza, Linear upper bounds for local Ramsey numbers, Graphs Combin., 3 (1987), 67–73

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Sárközy.

Additional information

Dedicated to Endre Szemerédi on the occasion of his 80th birthday

Research was supported in part by NKFIH Grants No. K116769, K117879.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sárközy, G.N. Monochromatic Partitions In Local Edge Colorings. Acta Math. Hungar. 161, 412–426 (2020). https://doi.org/10.1007/s10474-020-01054-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01054-1

Key words and phrases

Mathematics Subject Classification

Navigation