Skip to main content
Log in

On the p-adic properties of Stirling numbers of the first kind

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let n, k and a be positive integers. The Stirling numbers of the first kind, denoted by s(n, k), count the number of permutations of n elements with k disjoint cycles. Let p be a prime. Lengyel, Komatsu and Young, Leonetti and Sanna, Adelberg, Hong and Qiu made some progress in the study of the p-adic valuations of s(n, k). In this paper, by using Washington’s congruence on the generalized harmonic number and the n-th Bernoulli number Bn and the properties of m-th Stirling numbers of the first kind obtained recently by the authors, we arrive at an exact expression or a lower bound on vp(s(ap, k)) witha and k being integers such that \(1\le a\le p-1\) and \(1\le k\le ap\). This infers that for any regular prime \(p\ge 7\) and for arbitrary integers a and k with \(5\le a\le p-1\) and \(a-2\le k\le ap-1\), one has \(v_{p}(H(ap-1,k)) < -\frac{\log{(ap-1)}}{2\log p}\) with \(H(ap-1, k)\) being the k-th elementary symmetric function of \(1, \frac{1}{2}, \ldots , \frac{1}{ap-1}\) . This gives a partial support to a conjecture of Leonetti and Sanna. We also present results on \(v_p(s(ap^{n},ap^{n}-k))\) from which one can derive that under certain condition, for any prime \(p\ge 5\), any odd number \(k\ge 3\) and any sufficiently large integer n, if \((a,p)=1\), then \(v_p(s(ap^{n+1},ap^{n+1}-k))=v_p(s(ap^{n},ap^{n}-k))+2\). It confirms partially Lengyel’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamchik, V.: On Stirling numbers and Euler sums. J. Comput. Appl. Math. 79, 119–130 (1997)

    Article  MathSciNet  Google Scholar 

  2. Adelberg, A.: The \(p\)-adic analysis of Stirling numbers via higher order Bernoulli numbers. Int. J. Number Theory 14, 2767–2779 (2018)

    Article  MathSciNet  Google Scholar 

  3. Boyd, D.W.: A \(p\)-adic study of the partial sums of the harmonic series. Experiment. Math. 3, 287–302 (1994)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y.G., Tang, M.: On the elementary symmetric functions of \(1, 1/2, \ldots,\) \(1/n\). Amer. Math. Monthly 119, 862–867 (2012)

    Article  MathSciNet  Google Scholar 

  5. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, revised and enlarged edition, D. Reidel Publishing Co. (Dordrecht, Boston, 1974)

  6. Eswarathasan, A., Levine, E.: \(p\)-integral harmonic sums. Discrete Math. 91, 249–257 (1991)

    Article  MathSciNet  Google Scholar 

  7. Erdős, P., Niven, I.: Some properties of partial sums of the harmonic series. Bull. Amer. Math. Soc. 52, 248–251 (1946)

    Article  MathSciNet  Google Scholar 

  8. Feng, Y.L., Hong, S.F., Jiang, X., Yin, Q.Y.: A generalization of a theorem of Nagell. Acta Math. Hungar. 157, 522–536 (2019)

    Article  MathSciNet  Google Scholar 

  9. Hong, S.F.: Notes on Glaisher's congruences. Chinese Ann. Math. Ser. B 21, 33–38 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hong, S.F., Wang, C.L.: The elementary symmetric functions of reciprocal arithmetic progressions. Acta Math. Hungar. 144, 196–211 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hong, S.F., Zhao, J.R., Zhao, W.: The 2-adic valuations of Stirling numbers of the second kind. Int. J. Number Theory 8, 1057–1066 (2012)

    Article  MathSciNet  Google Scholar 

  12. L. C. Hsu and P. J-S.Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math., 20 (1998), 366–384

  13. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nded., Springer-Verlag (New York, 1990)

  14. Kamano, K.: On 3-adic valuations of generalized harmonic numbers. Integers 12, 311–319 (2012)

    Article  MathSciNet  Google Scholar 

  15. N. Koblitz, \(p\)-adic Numbers, \(p\)-adic Analysis and Zeta-functions, 2nd ed., GTM58, Springer-Verlag (New York, 1984)

  16. Komatsu, T., Young, P.: Exact \(p\)-adic valuations of Stirling numbers of the first kind. J. Number Theory 177, 20–27 (2017)

    Article  MathSciNet  Google Scholar 

  17. Lengyel, T.: On the divisibility by 2 of Stirling numbers of the second kind. Fibonacci Quart. 32, 194–201 (1994)

    MathSciNet  MATH  Google Scholar 

  18. T. Lengyel, On the 2-adic order of Stirling numbers of the second kind and their differences, DMTCS Proc.AK (2009), 561–572

  19. Lengyel, T.: On \(p\)-adic properties of the Stirling numbers of the first kind. J. Number Theory 148, 73–94 (2015)

    Article  MathSciNet  Google Scholar 

  20. Leonetti, P., Sanna, C.: On the \(p\)-adic valuation of Stirling numbers of the first kind. Acta Math. Hungar. 151, 217–231 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lundell, A.T.: A divisibility property for Stirling numbers. J. Number Theory 10, 35–54 (1978)

    Article  MathSciNet  Google Scholar 

  22. Y. Y. Luo, S. F. Hong, G. Y. Qian and C. L. Wang, The elementary symmetric functions of a reciprocal polynomial sequence, C.R.Math. Acad. Sci. Paris, 352 (2014), 269–272

  23. Miska, P.: On \(p\)-adic valuations of Stirling numbers. Acta Arith. 186, 337–348 (2018)

    Article  MathSciNet  Google Scholar 

  24. Nagell, T.: Eine Eigenschaft gewisser Summen. Skr. Norske Vid. Akad. Kristiania 13, 10–15 (1923)

    MATH  Google Scholar 

  25. Theisinger, L.: Bemerkung über die harmonische Reihe. Monatsh. Math. Phys. 26, 132–134 (1915)

    Article  MathSciNet  Google Scholar 

  26. M. Qiu, Y. L. Feng and S. F. Hong, 3-adic valuations of Stirling numbers of the first kind (preprint) (2019)

  27. Qiu, M., Hong, S.F.: 2-adic valuations of Stirling numbers of the first kind. Int. J. Number Theory 15, 1827–1855 (2019)

    Article  MathSciNet  Google Scholar 

  28. Sanna, C.: On the \(p\)-adic valuation of harmonic numbers. J. Number Theory 166, 41–46 (2016)

    Article  MathSciNet  Google Scholar 

  29. R. Séroul, Programming for Mathematicians, Springer-Verlag (Berlin, 2000)

  30. Wang, C.L., Hong, S.F.: On the integrality of the elementary symmetric functions of \(1, 1/3, \ldots,1/(2n - 1)\). Math. Slovaca 65, 957–962 (2015)

    MathSciNet  MATH  Google Scholar 

  31. L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag (New York, 1982)

  32. Washington, L.C.: \(p\)-adic \(L\)-function and sums of powers. J. Number Theory 69, 50–61 (1998)

    Article  MathSciNet  Google Scholar 

  33. Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5, 35–39 (1862)

    Google Scholar 

  34. Yang, W.X., Li, M., Feng, Y.L., Jiang, X.: On the integrality of the first and second elementary symmetric functions of \(1, 1/2^{s_2}, \ldots,1/n^{s_n}\). AIMS Math. 2, 682–691 (2017)

    Article  Google Scholar 

  35. Zhao, J.R., Hong, S.F., Zhao, W.: Divisibility by 2 of Stirling numbers of the second kind and their differences. J. Number Theory 140, 324–348 (2014)

    Article  MathSciNet  Google Scholar 

  36. Zhao, W., Zhao, J.R., Hong, S.F.: The 2-adic valuations of differences of Stirling numbers of the second kind. J. Number Theory 153, 309–320 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors thank the anonymous referee for a careful reading of the manuscript and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qiu.

Additional information

S. F. Hong was partially supported by National Science Foundation of China Grant #11771304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Qiu, M. On the p-adic properties of Stirling numbers of the first kind. Acta Math. Hungar. 161, 366–395 (2020). https://doi.org/10.1007/s10474-020-01037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-020-01037-2

Key words and phrases

Mathematics Subject Classification

Navigation