Skip to main content
Log in

On the Komlós–Révész SLLN for dependent variables

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The Komlós–Révész strong law of large numbers (SLLN) is extended and proved for two dependent families of random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash R.B.: Probability and Measure Theory. Academic Press, New York (2000)

    MATH  Google Scholar 

  2. Billingsley P.: Probability and Measure. 3rd ed. Wiley, New York (1995)

    MATH  Google Scholar 

  3. R. C. Bradley, Introduction to Strong Mixing Conditions, vols. I-III, Kendrick Press (Heber City, 2007).

  4. Chandra T.K.: Laws of Large Numbers. Narosa Publishing House, New Delhi (2012)

    Google Scholar 

  5. Chow Y.S.: Local convergence of martingales and the law of large numbers. Ann. Math. Stat. 36, 552–558 (1965)

    Article  MathSciNet  Google Scholar 

  6. Y. S. Chow and H. Teicher, Probability Theory. Independence, Interchangebility, Martingales 3rd ed., Springer Texts in Statistics, Springer-Verlag (New York, 2003).

  7. Chung K.-L.: Note on some strong laws of large numbers. Amer. J. Math. 69, 189–192 (1947)

    Article  MathSciNet  Google Scholar 

  8. Chung K.-L.: A course in Probability Theory. 3rd ed. Academic Press, New York (2001)

    Google Scholar 

  9. Cohen G.: On the Komlós–Révész estimation problem for random variables without variances. Acta Sci. Math. (Szeged) 74, 915–925 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Cohen G., Lin M.: Almost sure convergence of weighted sums of independent random variables. Contemp. Math. 485, 13–43 (2009)

    Article  MathSciNet  Google Scholar 

  11. Cohn H.: On a class of dependent variables. Rev. Roumaine Math. Pures Appl. 10, 1593–1606 (1965)

    MathSciNet  MATH  Google Scholar 

  12. Dudley R.M.: Real Analysis and Probability. Chapman & Hall, New York (1989)

    MATH  Google Scholar 

  13. Hall P., Heyde C.C.: Martingale Limit Theory and its Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  14. Iosifescu M., Teodorescu R.: Random Processes and Learning. Springer-Verlag, Berlin–Heidelberg–New York (1969)

    Book  Google Scholar 

  15. Iosifescu M., Kraaikamp S.: Metrical Theory of Continued Fractions. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  16. Jamison B., Orey S., Pruitt W.: Convergence of weighted averages of indenpendent random variables. Z. Wahrsch. verw. Gebiete 4, 40–44 (1965)

    Article  Google Scholar 

  17. Knopp K.: Infinite Sequences and Series. Dover Publication Inc, New York (1958)

    Google Scholar 

  18. A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag (Berlin, 1933); reprinted: Foundations of the Theory of Probability, 2nd ed., Chelsea Publ. Comp. (New York, 1956); 2nd Russian edition: Fundamental concepts of probability theory, Nauka (Moscow, 1974).

  19. Komlós J., Révész P.: On the weighted averages of independent random variables. Magyar Tud. Akad. Mat. Kutató Int. Közl. 9, 583–587 (1965)

    MathSciNet  MATH  Google Scholar 

  20. Kwapień S., Woyczyński W.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  21. Lévy P.: Théorie de l’addition des variables aléatoires. Gauthier-Villars, Paris (1937)

    MATH  Google Scholar 

  22. Lin Z., Lu C.: Limit Theory for Mixing Dependent Random Variables. Kluwer Academic Press, Boston (1996)

    MATH  Google Scholar 

  23. Lin Z.Y., Bai Z.D.: Probability Inequalities. Science Press (Beijing) and Springer, Berlin (2010)

    MATH  Google Scholar 

  24. Loève M.: Probability Theory. 2nd ed. Van Nostrand, New York (1960)

    MATH  Google Scholar 

  25. Marcinkiewicz J., Zygmund A.: Sur les fonctions indépendantes. Fund. Math. 29, 60–90 (1937)

    MATH  Google Scholar 

  26. Matuła P.: A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15, 209–213 (1992)

    Article  MathSciNet  Google Scholar 

  27. Petrov V.V.: Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Oxford Studies in Probability 4, Oxford (1995)

    MATH  Google Scholar 

  28. Révész P.: The Laws of Large Numbers. Academic Press, New York (1968)

    MATH  Google Scholar 

  29. Rosalsky A.: A strong law for weighted averages of random variables and the Komlós–Révész estimation problem. Calcutta Statist. Assoc. Bull. 35, 59–66 (1986)

    Article  MathSciNet  Google Scholar 

  30. Shao Q.-M.: A comparison theorem of on moment inequalities between negatively associated and andependent random variables. J. Theoret. Probab. 13, 343–356 (2000)

    Article  MathSciNet  Google Scholar 

  31. Shiryaev A.N.: Probability. 2nd ed. Springer, New York (1996)

    Book  Google Scholar 

  32. Stout W.F.: On convergence of φ-mixing sequences of random variables. Z. Wahrsch. verw. Gebiete 31, 69–70 (1974)

    Article  MathSciNet  Google Scholar 

  33. Stout W.F.: Almost Sure Convergence. Academic Press, New York (2000)

    MATH  Google Scholar 

  34. Szewczak Z.S.: limit theorems for continued fractions. J. Theoret. Probab. 22, 239–255 (2009)

    Article  MathSciNet  Google Scholar 

  35. Szewczak Z.S.: Marcinkiewicz laws with infinite moments. Acta Math. Hungar. 127, 64–84 (2010)

    Article  MathSciNet  Google Scholar 

  36. Szewczak Z.S.: A moment maximal inequality for dependent random variables. Statist. Probab. Lett. 106, 129–133 (2015)

    Article  MathSciNet  Google Scholar 

  37. Utev S.A.: Sums of random variables with φ-mixing. Siberian Adv. Math. 1, 124–155 (1991)

    MathSciNet  MATH  Google Scholar 

  38. D. Wajc, Negative association: definition, properties, and applications, http://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Szewczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szewczak, Z.S. On the Komlós–Révész SLLN for dependent variables. Acta Math. Hungar. 156, 47–55 (2018). https://doi.org/10.1007/s10474-018-0861-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-018-0861-4

Key words and phrases

Mathematics Subject Classification

Navigation