Skip to main content
Log in

Divisibility properties of hyperharmonic numbers

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We extend Wolstenholme’s theorem to hyperharmonic numbers. Then, we obtain infinitely many congruence classes for hyperharmonic numbers using combinatorial methods. In particular, we show that the numerator of any hyperharmonic number in its reduced fractional form is odd. Then we give quantitative estimates for the number of pairs (n, r) lying in a rectangle where the corresponding hyperharmonic number \({ h_n^{(r)} }\) is divisible by a given prime number p. We also provide p-adic value lower bounds for certain hyperharmonic numbers. It is an open problem that given a prime number p, there are only finitely many harmonic numbers h n which are divisible by p. We show that if we go to the higher levels r ≥  2, there are infinitely many hyperharmonic numbers \({ h_n^{(r)} }\) which are divisible by p. We also prove a finiteness result which is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkan E.: Variations on Wolstenholme’s Theorem. Amer. Math. Monthly, 101, 1001–1004 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alkan E.: Approximation by special values of harmonic zeta function and log-sine integrals. Comm. Number Theory Physics, 7, 515–550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alkan E.: Special values of the Riemann zeta function capture all real numbers. Proc. Amer. Math. Soc., 143, 3743–3752 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag (New York, 1976).

  5. Babbage C.: Demonstration of a theorem relating to prime numbers. Edinburgh Philos. J., 1, 46–49 (1819)

    Google Scholar 

  6. R. C. Baker, G. Harman and J. Pintz, The difference between consecutive primes, II, Proc. London Math. Soc., 83 (2001), 532–562.

  7. Boyd D. W.: A p-adic study of the partial sums of the harmonic series. Experiment. Math., 3, 287–302 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlitz L.: A note on Wolstenholme’s theorem. Amer. Math. Monthly, 61, 174–176 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Conrad, The p-adic growth of harmonic sums, available at: www.math.uconn.edu/~kconrad/blurbs/gradnumthy/padicharmonicsum.pdf.

  10. J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag (New York, 1996).

  11. Dil A., Mező I.: Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence. Cent. Eur. J. Math., 7, 310–321 (2009)

    MathSciNet  MATH  Google Scholar 

  12. P. Erdős, Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged), 5 (1930–1932), 194–198.

  13. Eswarathasan A., Levine E.: p-integral harmonic sums. Discrete Math., 91, 249–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Göral H., Sertbaş D. C.: Almost all hyperharmonic numbers are not integers. J. Number Theory, 171, 495–526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Göral and D. C. Sertbaş, A congruence for some generalized harmonic type sums, Int. J. Number Theory, to appear.

  16. Komatsu T., Young P. T.: Exact p-adic valuations of Stirling numbers of the first kind. J. Number Theory, 177, 20–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kummer E.E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math., 44, 93–146 (1852)

    Article  MathSciNet  Google Scholar 

  18. Mező I.: About the non-integer property of hyperharmonic numbers. Ann. Univ. Sci. Budapest., Sect. Math., 50, 13–20 (2007)

    MathSciNet  MATH  Google Scholar 

  19. W. A. Stein et al., Sage Mathematics Software (version 6.10.rc2), The Sage Development Team, 2015, www.sagemath.org.

  20. Theisinger L.: Bemerkung über die harmonische Reihe. Monatsh. Math. Phys., 26, 132–134 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolstenholme J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math., 5, 35–39 (1862)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Göral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göral, H., Sertbaş, D.C. Divisibility properties of hyperharmonic numbers. Acta Math. Hungar. 154, 147–186 (2018). https://doi.org/10.1007/s10474-017-0766-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-017-0766-7

Key words and phrases

Mathematics Subject Classification

Navigation