Skip to main content
Log in

The Walsh–Kaczmarz–Marcinkiewicz means and Hardy spaces

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

It is known that the maximal operator \({\sigma^{\kappa,*}(f)} := sup_{n \in \mathbf{P}}{|{\sigma}_{n}^{\kappa} (f)|}\) is bounded from the dyadic Hardy space \({H_{p}}\) into the space \({L_{p}}\) for \({p > 2/3}\) [6]. Moreover, Goginava and Nagy showed that \({\sigma^{\kappa,*}}\) is not bounded from the Hardy space \({H_{2/3}}\) to the space \({L_{2/3}}\) [9]. The main aim of this paper is to investigate the case \({0 < p < 2/3}\). We show that the weighted maximal operator \({\tilde{\sigma}^{\kappa,*,p}(f) :=sup_{n\in \mathbf{P}} \frac{|{\sigma}_{n}^\kappa (f)|}{n^{2/p-3}}}\), is bounded from the Hardy space \({H_{p}}\) into the space \({L_{p}}\) for any \({0 < p < 2/3}\). With its aid we provide a necessary and sufficient condition for the convergence of Walsh–Kaczmarz–Marcinkiewicz means in terms of modulus of continuity on the Hardy space \({H_p}\), and prove a strong convergence theorem for this means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Agajev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinstein, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, (“ELM” Baku, USSR, 1981) (Russian).

  2. Blahota I.: On a norm inequality with respect to Vilenkin-like systems. Acta Math. Hungar. 89, 15–27 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gát G.: On \({(C,1)}\) summability of integrable functions with respect to the Walsh–Kaczmarz system. Studia Math. 130, 135–148 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Gát G.: Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hungar. 61, 131–149 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gát G., Goginava U., Nagy K.: On \({(H_{pq},L_{pq})}\)-type inequality of maximal operator of Marcinkiewicz–Fejér means of double Fourier series with respect to the Walsh–Kaczmarz system. Math. Ineq. Appl. 9, 473–485 (2006)

    MATH  Google Scholar 

  6. Gát G., Goginava U., Nagy K.: On the Marcinkiewicz–Fejér means of double Fourier series with respect to the Walsh–Kaczmarz system. Studia Sci. Math. Hungar. 46, 399–421 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Goginava U.: The maximal operator of the Fejér means of the character system of the \({p}\)-series field in the Kaczmarz rearrangement. Publ. Math. Debrecen 71, 43–55 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Goginava U.: The martingale Hardy type inequality for Marcinkiewicz–Fejér means of two-dimensional conjugate Walsh–Fourier series. Acta Math. Sinica, English Series 27, 1949–1958 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goginava U., Nagy K.: On the maximal operator of the Marcinkiewicz–Fejér means of double Walsh–Kaczmarz–Fourier series. Publ. Math. Debrecen 75, 95–104 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Goginava U., Nagy K.: On the maximal operator of Walsh–Kaczmarz–Fejér means. Czech. Math. J. 61, 673–686 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marcinkiewicz J.: Sur une methode remarquable de sommation des series doubles de Fourier. Ann. Scuola Norm. Sup. Pisa 8, 149–160 (1939)

    MathSciNet  MATH  Google Scholar 

  12. Nagy K.: On the two-dimensional Marcinkiewicz means with respect to Walsh–Kaczmarz system. J. Approx. Theory 142, 138–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nagy K.: The maximal operator of Marcinkiewicz–Fejér means with respect to Walsh–Kaczmarz–Fourier series. Math. Ineq. Appl. 18, 97–110 (2015)

    MATH  Google Scholar 

  14. Nagy K., Tephnadze G.: Walsh–Marcinkiewicz means and Hardy spaces. Centr. Eur. J. Math. 12, 1214–1228 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Nagy K., Tephnadze G.: Strong convergence theorem for Walsh–Marcinkiewicz means. Math. Ineq. Appl. 19, 185–195 (2016)

    MathSciNet  MATH  Google Scholar 

  16. F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger (Bristol–New York, 1990).

  17. Schipp F.: Pointwise convergence of expansions with respect to certain product systems. Anal. Math. 2, 63–75 (1976)

    MathSciNet  MATH  Google Scholar 

  18. Simon P.: On the Cesàro summability with respect to the Walsh–Kaczmarz system. J. Approx. Theory 106, 249–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Simon P.: Strong convergence of certain means with respect to the Walsh–Fourier series. Acta Math. Hungar. 49, 425–431 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simon P.: Remarks on strong convergence with respect to the Walsh system. East J. Approx. 6, 261–276 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Skvortsov V. A.: On Fourier series with respect to the Walsh–Kaczmarz system. Anal. Math. 7, 141–150 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith B.: A strong convergence theorem for \({H^1(T)}\). Lecture Notes Math. 995, 169–173 (1983)

    Article  MathSciNet  Google Scholar 

  23. S̆neider A.A.: On series with respect to the Walsh functions with monotone coefficients. Izv. Akad. Nauk SSSR Ser. Math. 12, 179–192 (1948)

    MathSciNet  Google Scholar 

  24. Tephnadze G.: On the maximal operators of Walsh–Kaczmarz–Fejér means. Periodica Math. Hungar. 67, 33–45 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tephnadze G.: Approximation by Walsh–Kaczmarz–Fejér means on the Hardy space. Acta Math. Sci. 34, 1593–1602 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tephnadze G.: Strong convergence theorems of Walsh–Fejér means. Acta Math. Hungar. 142, 244–259 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Young W.S.: On the a.e. converence of Walsh–Kaczmarz–Fourier series. Proc. Amer. Math. Soc. 44, 353–358 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer-Verlag (Berlin, 1994).

  29. F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Space, Kluwer Academic (Dordrecht, 2002).

  30. Weisz F.: \({\theta}\)-summability of Fourier series. Acta Math. Hungar. 103, 139–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhizhiashvili L. V.: Generalization of a theorem of Marcinkiewicz. Izv. Akad. Nauk USSR Ser. Math. 32, 1112–1122 (1968)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tephnadze.

Additional information

Research is supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051, Campus Hungary grant B2/4R/15701 and Shota Rustaveli National Science Foundation grants YS15-2.1.1-47 and DI/9/5-100/13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, K., Tephnadze, G. The Walsh–Kaczmarz–Marcinkiewicz means and Hardy spaces. Acta Math. Hungar. 149, 346–374 (2016). https://doi.org/10.1007/s10474-016-0617-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-016-0617-y

Key words and phrases

Mathematics Subject Classification

Navigation