Skip to main content
Log in

A Theory of Stationary Trees and the Balanced Baumgartner–Hajnal–Todorcevic Theorem for Trees

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Building on early work by Stevo Todorcevic, we develop a theory of stationary subtrees of trees of successor-cardinal height. We define the diagonal union of subsets of a tree, as well as normal ideals on a tree, and we characterize arbitrary subsets of a non-special tree as being either stationary or non-stationary.

We then use this theory to prove the following partition relation for trees:

Main Theorem. Let \({\kappa}\) be any infinite regular cardinal, let ξ be any ordinal such that \({2^{|\xi|} < \kappa}\), and let k be any natural number. Then

$$non-(2^{<\kappa})-special\, tree \rightarrow (\kappa + \xi)^{2}_k.$$

This is a generalization to trees of the Balanced Baumgartner–Hajnal–Todorcevic Theorem, which we recover by applying the above to the cardinal \({(2^{< \kappa})^{+}}\), the simplest example of a non-\({(2^{< \kappa})}\)-special tree.

As a corollary, we obtain a general result for partially ordered sets:

Theorem. Let \({\kappa}\) be any infinite regular cardinal, let ξ be any ordinal such that \({2^{|\xi|} < \kappa}\), and let k be any natural number. Let P be a partially ordered set such that \({P \rightarrow (2^{< \kappa})^{1}_{2^{< \kappa}} }\). Then

$$P \rightarrow (\kappa + \xi)^{2}_{k}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavel Sergeevich Aleksandrov and Pavel Samuilovich Uryson, Mémoire sur les espaces topologiques compacts, Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, Proceedings of the section of mathematical sciences, 14 (1929), pp. 1–96. Note supplémentaire, pp. 95–96.

  2. James Earl Baumgartner, Hajnal’s contributions to combinatorial set theory and the partition calculus, in: Set Theory: The Hajnal Conference, October 15–17, 1999 (Simon Thomas, ed.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 58, American Mathematical Society (Providence, Rhode Island, 2002), pp. 25–30.

  3. James Earl Baumgartner and András Hajnal, A proof (involving Martin’s axiom) of a partition relation, Fund. Math., 78 (1973), 193–203.

  4. James Earl Baumgartner, András Hajnal and Stevo B. Todorčević, Extensions of the Erdöos–Rado Theorem, in: Finite and Infinite Combinatorics in Sets and Logic, Proceedings of the NATO Advanced Study Institute held in Banff, Alberta, April 21–May 4, 1991 (N. W. Sauer, R. E. Woodrow and B. Sands, eds.), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 411, Kluwer Academic Publishers Group (Dordrecht, 1993), pp. 1–17, preprint available at http://arxiv.org/abs/math/9311207.

  5. James Earl Baumgartner, Jerome Irving Malitz and William Nelson Reinhardt, Embedding trees in the rationals, in: Proceedings of the National Academy of Sciences of the USA, 67 (December, 1970), pp. 1748–1753.

  6. James Earl Baumgartner, Alan Dana Taylor and StanleyWagon, Structural Properties of Ideals, Dissertationes Mathematicae (Rozprawy Matematyczne) vol. 197, Polska Akademia Nauk, Instytut Matematyczny (Warszawa, 1982).

  7. Gérard Bloch, Sur les ensembles stationnaires de nombres ordinaux et les suites distinguées de fonctions régressives, Comptes Rendus de l’Académie des Sciences, 236 (1953), 265–268.

  8. Ari Meir Brodsky, A Theory of Stationary Trees and the Balanced Baumgartner– Hajnal–Todorcevic Theorem for Trees, Ph.D. thesis, University of Toronto (2014).

  9. Alan Stewart Dow, An introduction to applications of elementary submodels to topology, Topology Proc., 13 (1988), 17–72.

    MathSciNet  Google Scholar 

  10. Ben Dushnik, A note on transfinite ordinals, Bull. Amer. Math. Soc., 37 (1931), 860–862.

    Article  MATH  MathSciNet  Google Scholar 

  11. Paul Erdös, András Hajnal, Attila Máté and Richard Rado, Combinatorial Set Theory: Partition Relations for Cardinals, Studies in Logic and the Foundations of Mathematics, vol. 106, North-Holland Publishing Company (Amsterdam, 1984).

  12. Paul Erdös and Richard Rado, A partition calculus in set theory, Bull. Amer. Math. Soc., 62 (1956), 427–489.

  13. David H. Fremlin, Consequences of Martin’s Axiom, Cambridge Tracts in Mathematics, vol. 84, Cambridge University Press (Cambridge, 1984).

  14. Frederick William Galvin, On a Partition Theorem of Baumgartner and Hajnal, in: Infinite and Finite Sets, Part II, Colloquia Mathematica Societatis János Bolyai, vol. 10, North-Holland Publishing Company (Amsterdam, 1975), pp. 711–729.

  15. András Hajnal and Jean Ann Larson, Partition Relations, Handbook of Set Theory (M. Foreman and A. Kanamori, eds.), Springer Science+Business Media (2010), pp. 129–213.

  16. Thomas J. Jech, Set Theory: The Third Millennium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer-Verlag (Berlin, 2003).

  17. Winfried Just and Martin Weese, Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician, Graduate Studies in Mathematics, vol. 18, American Mathematical Society (1997).

  18. Akihiro Kanamori, Partition relations for successor cardinals, Advances in Math., 59 (1986), 152–169.

    Article  MATH  Google Scholar 

  19. Kenneth Kunen, Set Theory, Studies in Logic: Mathematical Logic and Foundations, vol. 34, College Publications (London, 2011).

  20. Ðuro Kurepa, Ensembles ordonnés et ramifiés, Publications de l’Institut Mathématique Beograd, 4 (1935), pp. 1–138. Available (excluding p. 51) at http://elib.mi.sanu.ac.rs/files/journals/publ/4/1.pdf. Included (without the Appendix) in [22, pp. 12–114].

  21. Ðuro Kurepa, Ensembles ordonnés et leurs sous-ensembles bien ordonnés, Comptes Rendus de l’Académie des Sciences de Paris, 242 (1956), 2202–2203. Included in [22, pp. 236–237].

  22. Aleksandar Ivić, Zlatko Mamuzić, Žarko Mijajlović and Stevo Todorčević, eds., Selected Papers of Ðuro Kurepa, Matematički Institut SANU (Serbian Academy of Sciences and Arts) (Beograd, 1996).

  23. Jean Ann Larson, Infinite Combinatorics, Sets and Extensions in the Twentieth Century (Akihiro Kanamori, ed.), vol. 6 of Handbook of the History of Logic, North Holland (2012), pp. 145–357.

  24. Eric C. Milner, The use of elementary substructures in combinatorics, Discrete Math.,136 (1994), 243–252.

    Article  MathSciNet  Google Scholar 

  25. Walter Neumer, Verallgemeinerung eines Satzes von Alexandroff und Urysohn, Math. Zeitschrift, 54 (1951), 254–261.

  26. Mary Ellen Rudin, Lectures on Set Theoretic Topology, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, Number 23, American Mathematical Society (Providence, 1975).

  27. Saharon Shelah, Notes on combinatorial set theory, Israel J. Math., 14 (1973), 262–277.

  28. Saharon Shelah, A partition relation using strongly compact cardinals, Proc. Amer. Math. Soc., 131 (2003), 2585–2592.

  29. Stevo B. Todorčević, Stationary sets, trees and continuums, Publications de l’Institut Mathématique Beograd, Nouvelle Série, 29 (43) (1981), 249–262. Available at http://elib.mi.sanu.ac.rs/files/journals/publ/49/n043p249.pdf.

  30. Stevo B. Todorčević, Trees and Linearly Ordered Sets, Ch. 6 of Handbook of Set-Theoretic Topology (Kenneth Kunen and Jerry E. Vaughan, eds.), North-Holland Publishing Company (Amsterdam, 1984), pp. 235–293.

  31. Stevo B. Todorčević, Partition relations for partially ordered sets, Acta Math., 155 (1985), 1–25.

  32. Stevo B. Todorčević, Walks on Ordinals and Their Characteristics, Progress in Mathematics, vol. 263, Birkhäuser (Basel, 2007).

  33. Neil Hale Williams, Combinatorial Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 91, North-Holland Publishing Company (Amsterdam,1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Brodsky.

Additional information

This paper is dedicated in memory of two special mathematicians: Professor Paul Charles Rosenbloom, March 31, 1920 – May 26, 2005 Daniel Tsur Pasher, August 22, 1978 – July 16, 2005

Special thanks to Professor Stevo Todorcevic for his guidance throughout the writing of this paper. The results of this paper are included in the author’s doctoral thesis [8].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodsky, A.M. A Theory of Stationary Trees and the Balanced Baumgartner–Hajnal–Todorcevic Theorem for Trees. Acta Math. Hungar. 144, 285–352 (2014). https://doi.org/10.1007/s10474-014-0419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-014-0419-z

Key words and phrases

Mathematics Subject Classification

Navigation