Skip to main content
Log in

The global existence of strong solutions for a non-isothermal ideal gas system

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach. We first show the global well-posedness in the Sobolev space H2 (ℝ3) for solutions near equilibrium through iterated energy-type bounds and a continuity argument. We then prove the global well-posedness in the critical Besov space \(\dot{\boldsymbol{B}}_{\boldsymbol{2,1}}^{\boldsymbol{3/2}}\) by showing that the linearized operator is a contraction mapping under the right circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011

    Book  Google Scholar 

  2. Berry R S, Rice S A, Ross J. Physical Chemistry. Oxford: Oxford University Press, 2000

    Google Scholar 

  3. Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994

    Book  Google Scholar 

  4. Bony J M. Calcul symbolique et propagation des singularités pour équations aux dérivées partielles non-linéaires. Annales Scinentifiques de l’école Normale Supérieure, 1981, 14: 209–246

    Article  Google Scholar 

  5. Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. Berlin: Springer-Verlag, 2016

    Book  Google Scholar 

  6. Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent math, 2000, 141: 579–614

    Article  ADS  MathSciNet  Google Scholar 

  7. De Anna F, Liu C. Non-isothermal general Ericksen-Leslie system: derivation, analysis and thermodynamic consistency. Arch Ration Mech Anal, 2019, 231: 637–717

    Article  MathSciNet  Google Scholar 

  8. De Anna F, Liu C, Schlömerkemper A, Sulzbach J E. Temperature dependent extensions of the Cahn-Hilliard equation. arXiv:2112.14665v1

  9. Feireisl E. Asymptotic analysis of the full Navier-Stokes-Fourier system: From compressible to incompressible fluid flows. Russian Mathematical Surveys, 2007, 62: 511–533

    Article  ADS  MathSciNet  Google Scholar 

  10. Feireisl E, Novotný A. Weak-strong uniqueness property for the full navier-stokes-fourier system. Arch Rational Mech Anal, 2012, 204: 683–706

    Article  ADS  MathSciNet  Google Scholar 

  11. Feireisl E, Novotný A. On a simple model of reacting compressible flows arising in astrophysics. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2005, 135: 1169–1194

    Article  MathSciNet  Google Scholar 

  12. Feireisl E, Novotný A. Weak sequential stability of the set of admissible variational solutions to the Navier-Stokes-Fourier system. SIAM J Math Anal, 2005, 37: 619–650

    Article  MathSciNet  Google Scholar 

  13. Feireisl E. Concepts of Solutions in the Thermodynamics of Compressible Fluids//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 1353–1379

    Chapter  Google Scholar 

  14. Fujita H, Kato T. On the Navier-Stokes initial value problem, I. Arch Ration Mech Anal, 1964, 16: 269–315

    Article  MathSciNet  Google Scholar 

  15. Giga M H, Kirshtein A, Liu C. Variational Modeling and Complex Fluids//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 73–113

    Chapter  Google Scholar 

  16. Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996

    Book  Google Scholar 

  17. Hsieh C Y, Lin T C, Liu C, Liu P. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. J Differential Equations, 2020, 269: 7287–7310

    Article  ADS  MathSciNet  Google Scholar 

  18. Hyon Y, Kwak D Y, Liu C. Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin Dyn Syst, 2010, 26: 1291–1304

    Article  MathSciNet  Google Scholar 

  19. Kreml O, Pokorny M. On the local strong solutions for a system describing the flow of a viscoelastic fluid. Banach Center Publlications, 2009, 86(1): 195–206

    Article  MathSciNet  Google Scholar 

  20. Lai N A, Liu C, Tarfulea A. Positivity of temperature for some non-isothermal fluid models. J Differential Equations, 2022, 339: 555–578

    Article  ADS  MathSciNet  Google Scholar 

  21. Liu C, Sulzbach J E. The Brinkman-Fourier system with ideal gas equilibrium. Discrete & Continuous Dynamical Systems, 2022, 42: 425–462

    Article  MathSciNet  CAS  Google Scholar 

  22. Liu C, Sulzbach J E. Well-posedness for the reaction-diffusion equation with temperature in a critical Besov space. J Differential Equations, 2022, 325: 119–149

    Article  ADS  MathSciNet  Google Scholar 

  23. McQuarrie D A. Statistical Mechanics. New York: Harper & Row, 1976

    Google Scholar 

  24. Novotný A, Petzeltová H. Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability, and Longtime Behavior//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 1381–1546

    Chapter  Google Scholar 

  25. Tarfulea A. Improved a priori bounds for thermal fluid equations. Transactions of the Amer Math Soc, 2019, 371: 2719–2737

    Article  MathSciNet  Google Scholar 

  26. Zeytounian R K. Asymptotic Modeling of Fluid Flow Phenomena. Dordrecht: Kluwer, 2002

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to professor Chun Liu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningan Lai.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

The first author was partially supported by the Zhejiang Province Science Fund (LY21A010009). The second author was partially supported by the National Science Foundation of China (12271487, 12171097). The third author was partially supported by the National Science Foundation (DMS-2012333, DMS-2108209).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Lai, N. & Tarfulea, A. The global existence of strong solutions for a non-isothermal ideal gas system. Acta Math Sci 44, 865–886 (2024). https://doi.org/10.1007/s10473-024-0306-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-024-0306-9

Key words

2020 MR Subject Classification

Navigation