Skip to main content
Log in

Isometry and phase-isometry of non-Archimedean normed spaces

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study isometries and phase-isometries of non-Archimedean normed spaces. We show that every isometry f : Sr (X) → Sr (X), where X is a finite-dimensional non-Archimedean normed space and Sr(X) is a sphere with radius r ∈ ∥X∥, is surjective if and only if \(\mathbb{K}\) is spherically complete and k is finite. Moreover, we prove that if X and Y are non-Archimedean normed spaces over non-trivially non-Archimedean valued fields with |2| = 1, any phase-isometry f: XY is phase equivalent to an isometric operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monna A F. On weak and strong convergence in a p-adic Banach space. Nederl Akad Wetensch Verslagen, Afd Natuurkunde, 1943, 52: 207–211

    MATH  Google Scholar 

  2. Monna A F. On non-Archimedean linear spaces. Nederl Akad Wetensch Verslagen, Afd Natuurkunde, 1943, 52: 308–321

    MathSciNet  MATH  Google Scholar 

  3. Monna A F. Linear functional equations in non-Archimedean Banach spaces. Nederl Akad Wetensch Verslagen, Afd Natuurkunde, 1943, 52: 654–661

    MathSciNet  MATH  Google Scholar 

  4. Moslehian M G, Sadeghi G A. A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Analysis: An International Multidisciplinary Journal, 2008, 69(10): 3405–3408

    Article  MathSciNet  MATH  Google Scholar 

  5. Kubzdela A. Isometries, Mazur-Ulam theorem and Aleksandrov problem for non-Archimedean normed spaces. Nonlinear Analysis Theory Methods & Applications, 2012, 75(4): 2060–2068

    Article  MathSciNet  MATH  Google Scholar 

  6. Sánchezz J C, Garmendia J N. Isometries of ultrametric normed spaces. Annals of Functional Analysis, 2021, 12(4): Art 58

    Google Scholar 

  7. Schikhof W H. Isometrical embeddings of ultrametric spaces into non-Archimedean valued fields. Indagationes Mathematicae (Proceedings), 1984, 87(1): 51–53

    Article  MathSciNet  MATH  Google Scholar 

  8. Mazur S, Ulam S. Sur les transformationes isométriques despaces vectoriels normés. C R Acad Sci Paris, 1932, 194(3): 946–948

    MATH  Google Scholar 

  9. Tingley D. Isometries of the unit sphere. Geometriae Dedicata, 1987, 22(3): 371–378

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu R. Extension of isometries on the unit sphere of Lp-space. Acta Mathematica Scientia, 2012, 32A(3): 510–520

    MATH  Google Scholar 

  11. Wang R. On the isometric extension problem. Quaestiones Mathematicae, 2013, 36: 321–330

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang R. On isometric extension problem. Lecture Notes in Non-linear Analysis, 2020, 18

  13. Gao J M, Tan D N. On extension of isometries between unit spheres in ALp-spaces (1 < p < ∞). Acta Mathematica Scientia, 2012, 32A(2): 387–394

    MATH  Google Scholar 

  14. Yi J J, Wang R D, Wang X X. Extension of isometries between the unit spheres of complex lp(Γ)(p > 1) spaces. Acta Mathematica Scientia, 2014, 34B(5): 1540–1550

    Article  MATH  Google Scholar 

  15. Wigner E P. Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren. Fredrik Vieweg und Sohn, 1931

  16. Bargmann V. Note on Wigner’s theorem on symmetry operations. J Math Phys, 1964, 5: 862–868

    Article  MathSciNet  MATH  Google Scholar 

  17. Sharma C S, Almeida D F. A direct proof of Wigner’s theorem on maps which preserve transition probabilities between pure states of quantum systems. Annals of Physics, 1990, 197(2): 300–309

    Article  MathSciNet  MATH  Google Scholar 

  18. Rätz J. On Wigner’s theorem: remarks, complements, comments, and corollaries. Aequ Math, 1996, 52(1): 1–9

    Article  MathSciNet  MATH  Google Scholar 

  19. Molnáar L. Wigner’s unitary-antiunitary theorem. Journal of the Australian Mathematical Society, 1998, 65(3): 354–369

    Article  MathSciNet  Google Scholar 

  20. Györy M. A new proof of Wigner’s theorem. Reports on Mathematical Physics, 2004, 54(2): 159–167

    Article  MathSciNet  MATH  Google Scholar 

  21. Chevalier G. Wigner’s theorem and its generalizations. Handbook of Quantum Logic and Quantum Structures, 2007: 429–475

  22. Maksa G, Pales Z. Wigner’s theorem revisited. Publicationes Mathematicae, 2012, 81(1/2): 243–249

    Article  MathSciNet  MATH  Google Scholar 

  23. He K, Hou J C. A generalization of Wigner’s theorem. Acta Mathematica Scientia, 2011, 31A(6): 1633–1636

    MathSciNet  MATH  Google Scholar 

  24. Huang X J, Tan D N. Wigner’s theorem in atomic Lp-spaces (p > 0). Publicationes Mathematicae, 2018, 92(3/4): 411–418

    Article  MATH  Google Scholar 

  25. Tan D N, Huang X J. Phase-isometries on real normed spaces. Journal of Mathematical Analysis and Applications, 2020, 488(1): 124058

    Article  MathSciNet  MATH  Google Scholar 

  26. Turnek D I. On Wigner’s theorem in strictly convex normed spaces. Publicationes Mathematicae, 2020, 97(3/4): 393–401

    MathSciNet  Google Scholar 

  27. Wang R D, Bugajewski D. On normed spaces with the Wigner property. Annals of Functional Analysis, 2020, 11: 523–539

    Article  MathSciNet  MATH  Google Scholar 

  28. Iliĕvić D, Omladič M, Turnšek A. Phase-isometries between normed spaces. Linear Algebra and Its Applications, 2021, 612: 99–111

    Article  MathSciNet  MATH  Google Scholar 

  29. Schikhof W H. Banach spaces over non-archimedean valued fields. Topology Proceedings, 1999: 547–581

  30. Kubzdela A. Selected Topics in non-Archimedean Banach Spaces. Wydawnictwo Naukowe Uniwersytetu Mikolaja Kopernika, 2018

  31. Perez-Garcia C, Schikhof W H. Locally Convex Spaces over non-Archimedean Valued Fields. Cambridge: Cambridge University Press, 2010

    Book  MATH  Google Scholar 

  32. Rooij A C M. Van Non-Archimedean Functional Analysis. New York: Marcel Dekker, 1978

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidong Wang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Wang’s research was supported by the Natural Science Foundation of China (12271402) and the Natural Science Foundation of Tianjin City (22JCYBJC00420).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yao, W. Isometry and phase-isometry of non-Archimedean normed spaces. Acta Math Sci 43, 2377–2386 (2023). https://doi.org/10.1007/s10473-023-0603-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0603-8

Key words

2010 MR Subject Classification

Navigation