Skip to main content
Log in

On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we rigorously derive the governing equations describing the motion of a stable stratified fluid, from the mathematical point of view. In particular, we prove that the scaled Boussinesq equations strongly converge to the viscous primitive equations with density stratification as the aspect ratio goes to zero, and the rate of convergence is of the same order as the aspect ratio. Moreover, in order to obtain this convergence result, we also establish the global well-posedness of strong solutions to the viscous primitive equations with density stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azérad P, Guillén F. Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J Math Anal, 2001, 33(4): 847–859

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardos C, Lopes Filho M C, Niu D, et al. Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J Math Anal, 2013, 45(3): 1871–1885

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresch D, Guillén-González F, Masmoudi N, Rodríguez-Bellido M A. On the uniqueness of weak solutions of the two-dimensional primitive equations. Differ Integral Equ, 2003, 16(1): 77–94

    MathSciNet  MATH  Google Scholar 

  4. Cao C, Ibrahim S, Nakanishi K, Titi E S. Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun Math Phys, 2015, 337(2): 473–482

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao C, Li J, Titi E S. Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity. Arch Ration Mech Anal, 2014, 214(1): 35–76

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao C, Li J, Titi E S. Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity. J Differ Equ, 2014, 257(11): 4108–4132

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao C, Li J, Titi E S. Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion. Commun Pure Appl Math, 2016, 69(8): 1492–1531

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao C, Li J, Titi E S. Strong solutions to the 3D primitive equations with horizontal dissipation: near H1 initial data. J Funct Anal, 2017, 272(11): 4606–4641

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao C, Li J, Titi E S. Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. Phys D, 2020, 412: 132606

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao C, Titi E S. Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann Math, 2007, 166(1): 245–267

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao C, Titi E S. Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion. Commun Math Phys, 2012, 310(2): 537–568

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao C, Titi E S. Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math, 2003, 56(2): 198–233

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang D, Han B. Global well-posedness for the 3D primitive equations in anisotropic framework. J Math Anal Appl, 2020, 484(2): 123714

    Article  MathSciNet  MATH  Google Scholar 

  14. Furukawa K, Giga Y, Hieber M, et al. Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations. Nonlinearity, 2020, 33(12): 6502–6516

    Article  MathSciNet  MATH  Google Scholar 

  15. Giga Y, Gries M, Hieber M, et al. The hydrostatic Stokes semigroup and well-posedness of the primitive equations on spaces of bounded functions. J Funct Anal, 2020, 279(3): 108561

    Article  MathSciNet  MATH  Google Scholar 

  16. Han-Kwan D, Nguyen T. Ill-posedness of the hydrostatic Euler and singular Vlasov equations. Arch Ration Mech Anal, 2016, 221(3): 1317–1344

    Article  MathSciNet  MATH  Google Scholar 

  17. Hieber M, Hussein A, Kashiwabara T. Global strong Lp well-posedness of the 3D primitive equations with heat and salinity diffusion. J Differ Equ, 2016, 261(12): 6950–6981

    Article  MATH  Google Scholar 

  18. Hieber M, Kashiwabara T. Global strong well-posedness of the three dimensional primitive equations in Lp-spaces. Arch Ration Mech Anal, 2016, 221(3): 1077–1115

    Article  MathSciNet  MATH  Google Scholar 

  19. Ibrahim S, Lin Q, Titi E S. Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation. J Differ Equ, 2021, 286: 557–577

    Article  MathSciNet  MATH  Google Scholar 

  20. Ju N. On H2 solutions and z-weak solutions of the 3D primitive equations. Indiana Univ Math J, 2017, 66(3): 973–996

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobelkov G M. Existence of a solution in the large for the 3D large-scale ocean dynamics equations. C R Math Acad Sci Paris, 2006, 343(4): 283–286

    Article  MathSciNet  MATH  Google Scholar 

  22. Kukavica I, Pei Y, Rusin W, Ziane M. Primitive equations with continuous initial data. Nonlinearity, 2014, 27(6): 1135–1155

    Article  MathSciNet  MATH  Google Scholar 

  23. Kukavica I, Ziane M. The regularity of solutions of the primitive equations of the ocean in space dimension three. C R Math Acad Sci Paris, 2007, 345(5): 257–260

    Article  MathSciNet  MATH  Google Scholar 

  24. Kukavica I, Ziane M. On the regularity of the primitive equations of the ocean. Nonlinearity, 2007, 20(12): 2739–2753

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions J L, Temam R, Wang S. New formulations of the primitive equations of atmosphere and applications. Nonlinearity, 1992, 5(2): 237–288

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions J L, Temam R, Wang S. On the equations of the large scale ocean. Nonlinearity, 1992, 5(5): 1007–1053

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions J L, Temam R, Wang S. Mathematical theory for the coupled atmosphere-ocean models. J Math Pures Appl, 1995, 74(2): 105–163

    MathSciNet  MATH  Google Scholar 

  28. Li J, Titi E S. The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation. J Math Pures Appl, 2019, 124: 30–58

    Article  MathSciNet  MATH  Google Scholar 

  29. Li J, Titi E S. Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data. SIAM J Math Anal, 2017, 49(1): 1–28

    Article  MathSciNet  MATH  Google Scholar 

  30. Li J, Titi E S, Yuan G. The primitive equations approximation of the anisotropic horizontally viscous Navier-Stokes equations. J Differ Equ, 2022, 306: 492–524

    Article  MathSciNet  MATH  Google Scholar 

  31. Li J, Yuan G. Global well-posedness of z-weak solutions to the primitive equations without vertical diffusivity. J Math Phys, 2022, 63(2): 021501

    Article  MathSciNet  MATH  Google Scholar 

  32. Majda A. Introduction to PDEs and Waves for the Atmosphere and Ocean. Providence, RI: American Mathematical Society, 2003

    Book  MATH  Google Scholar 

  33. Pedlosky J. Geophysical Fluid Dynamics. New York: Springer, 1987

    Book  MATH  Google Scholar 

  34. Pu X, Zhou W. Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation. Bull Malays Math Sci Soc, 2023, 46 (3): Art 88

  35. Renardy M. Ill-posedness of the hydrostatic Euler and Navier-Stokes equations. Arch Ration Mech Anal, 2009, 194(3): 877–886

    Article  MathSciNet  MATH  Google Scholar 

  36. Robinson J C, Rodrigo J L, Sadowski W. The Three-Dimensional Navier-Stokes Equations: Classical Theory. Cambridge: Cambridge University Press, 2016

    Book  MATH  Google Scholar 

  37. Seidov D. An intermediate model for large-scale ocean circulation studies. Dynam Atmos Oceans, 1996, 25(1): 25–55

    Article  Google Scholar 

  38. Tachim Medjo T. On the uniqueness of z-weak solutions of the three-dimensional primitive equations of the ocean. Nonlinear Anal Real World Appl, 2010, 11(3): 1413–1421

    Article  MathSciNet  MATH  Google Scholar 

  39. Temam R. Navier Stokes Equations: Theory and Numerical Analysis. Amsterdam: North-Holland Publishing Company, 1977

    MATH  Google Scholar 

  40. Vallis G K. Atmospheric and Oceanic Fluid Dynamics. Cambridge: Cambridge University Press, 2006

    Book  MATH  Google Scholar 

  41. Washington W M, Parkinson C L. An Introduction to Three Dimensional Climate Modeling. Oxford: Oxford University Press, 1986

    MATH  Google Scholar 

  42. Wong T K. Blowup of solutions of the hydrostatic Euler equations. Proc Amer Math Soc, 2015, 143(3): 1119–1125

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhou  (周文利).

Additional information

Pu was supported in part by the NNSF of China (11871172) and the Science and Technology Projects in Guangzhou (202201020132). Zhou was supported by the Innovation Research for the Postgraduates of Guangzhou University (2021GDJC-D09).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Zhou, W. On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification. Acta Math Sci 43, 1081–1104 (2023). https://doi.org/10.1007/s10473-023-0306-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-023-0306-1

Key words

2010 MR Subject Classification

Navigation