Skip to main content
Log in

Pointwise Space-Time Behavior of a Compressible Navier-Stokes-Korteweg System in Dimension Three

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

The Cauchy problem of compressible Navier-Stokes-Korteweg system in ℝ3 is considered here. Due to capillarity effect of material, we obtain the pointwise estimates of the solution in an H4-framework, which is different from the previous results for the compressible Navier-Stokes system in an H6-framework [24, 25]. Our result mainly relies on two different descriptions of the singularity in the short wave of Green’s function for dealing initial propagation and nonlinear coupling respectively. Our pointwise results demonstrate the generalized Huygens’ principle as the compressible Navier-Stokes system. As a corollary, we have an Lp estimate of the solution with p > 1, which is a generalization for p ≥ 2 in [33].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desmarais D J, Strauss H, Summons R E, et al. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 1992, 359: 605–609

    Article  Google Scholar 

  2. Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm Partial Differential Equations, 2003, 28: 843–868

    Article  MathSciNet  Google Scholar 

  3. Danchin R, Desjardins B. Existence of solutions for compressible fluid models of Korteweg type. Ann Inst H Poincare Anal Non Lineaire, 2001, 18: 97–133

    Article  MathSciNet  Google Scholar 

  4. Deng S J, Yu S H. Green’s function and pointwise convergence for compressible Navier-Stokes equations. Quart Appl Math, 2017, 75: 433–503

    Article  MathSciNet  Google Scholar 

  5. Du L L, Wu Z G. Solving the non-isentropic Navier-Stokes equations in odd space dimensions: The Green function method. J Math Phys, 2017, 58: 101506

    Article  MathSciNet  Google Scholar 

  6. Duan R J. Green’s function and large time behavior of the Navier-Stokes-Maxwell system. Anal Appl, 2012, 10: 133–197

    Article  MathSciNet  Google Scholar 

  7. Duan R J, Liu H X, Ukai S, Yang T. Optimal LpLq convergence rate for the compressible Navier-Stokes equations with potential force. J Diff Eqns, 2007, 238: 220–233

    Article  Google Scholar 

  8. Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rate for the compressible Navier-Stokes equations with potential force. Math Models Methods Appl Sci, 2007, 17: 737–758

    Article  MathSciNet  Google Scholar 

  9. Dunn J E, Serrin J. On the thermomechanics of interstitial working. Arch Ration Mech Anal, 1985, 88: 95–133

    Article  MathSciNet  Google Scholar 

  10. Gao J C, Yang Z, Yao Z A. Long-time behavior of solution for the compressible Navier-Stokes-Korteweg equations in R3. Appl Math Lett, 2015, 48: 30–35

    Article  MathSciNet  Google Scholar 

  11. Haspot B. Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2009, 13: 223–249

    Article  MathSciNet  Google Scholar 

  12. Hattori H, Li D. Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198: 84–97

    Article  MathSciNet  Google Scholar 

  13. Hoff D, Zumbrun K. Multi-dimensional diffusion wave for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44: 603–676

    Article  MathSciNet  Google Scholar 

  14. Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z Angew Math Phys, 1997, 48: 597–614

    Article  MathSciNet  Google Scholar 

  15. Hou X F, Peng H Y, Zhu C J. Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type. Nonlinear Analysis: Real World Applications, 2018, 43: 18–53

    Article  MathSciNet  Google Scholar 

  16. Hou X F, Peng H Y, Zhu C J. Global classical solutions to the 3D Navier-Stokes-Korteweg equations with small initial energy. Analysis and Applications, 2018, 16: 55–84

    Article  MathSciNet  Google Scholar 

  17. Hou X F, Yao L, Zhu C J. Vanishing capillarity limit of the compressible non-isentropic Navier-Stokes-Korteweg system to Navier-Stokes system. J Math Anal Appl, 2017, 448: 421–446

    Article  MathSciNet  Google Scholar 

  18. Kawashima S. System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics [T]. Kyoto University, 1983

  19. Kobayashi T, Shibata Y. Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equations. Pacific J Math, 2002, 207: 199–234

    Article  MathSciNet  Google Scholar 

  20. Korteweg D J. Sur la forme que prennent les equations du mouvements des fluides sil’on tient compte des forces capillaires causees par des variations de densite considerables mais connues et sur la theorie de la capillarite dans l’hypothese d’une variation continue de la densite. Archives Neerlandaises de Sciences Exactes et Naturelles, 1901, 6: 1–24

    MATH  Google Scholar 

  21. Kotschote M. Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincare Anal Non Lineaire, 2008, 25: 679–696

    Article  MathSciNet  Google Scholar 

  22. Li H L, Zhang T. Large time behavior of isentropic compressible Navier-Stokes system in R3. Math Methods Appl Sci, 2011, 34: 670–682

    Article  MathSciNet  Google Scholar 

  23. Li H L, Yang T, Zhong M Y. Green’s function and pointwise space-time behaviors of the Vlasov-Poisson-Boltzmann system. Arch Ration Mech Anal, 2019, 235: 1–47

    MathSciNet  Google Scholar 

  24. Liu T P, Noh S E. Wave propagation for the compressible Navier-Stokes equations. J Hyperbolic Differ Eqns, 2015, 12: 385–445

    Article  MathSciNet  Google Scholar 

  25. Liu T P, Wang W K. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension. Comm Math Phys, 1998, 196: 145–173

    Article  MathSciNet  Google Scholar 

  26. Liu T P, Zeng Y N. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem Amer Math Soc, 1997, 125

  27. Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67–104

    MathSciNet  MATH  Google Scholar 

  28. Saito H. On the maximal Lp−Lq regularity for a compressible fluid model of Korteweg type on general domains. J Diff Eqns, 2020, 268: 2802–2851

    Article  Google Scholar 

  29. Wang H T. Green’s Function for Viscous System [T]. National University of Singapore, 2014

  30. Wang W K, Yang T. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions. J Diff Eqns, 2001, 173: 410–450

    Article  MathSciNet  Google Scholar 

  31. Wang W K, Wu Z G. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions. J Diff Eqns, 2010, 248: 1617–1636

    Article  MathSciNet  Google Scholar 

  32. Wang W J, Wang W K. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete Contin Dyn Syst, 2015, 35: 513–536

    Article  MathSciNet  Google Scholar 

  33. Wang Y J, Tan Z. Optimal decay rates for the compressible fluid models of Korteweg type. J Math Anal Appl, 2011, 379: 256–271

    Article  MathSciNet  Google Scholar 

  34. Wu Z G, Wang W K. Pointwise estimates for bipolar compressible Navier-Stokes-Poisson system in dimension three. Arch Rational Mech Anal, 2017, 326: 587–638

    Article  MathSciNet  Google Scholar 

  35. Wu Z G, Wang W K. Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multidimensions. Acta Math Sci, 2012, 32B: 1681–1702

    MATH  Google Scholar 

  36. Wu Z G, Li Y P. Pointwise estimates of solutions for the multi-dimensional bipolar Euler-Poisson system. Z Angew Math Phys, 2016, 67: 50

    Article  MathSciNet  Google Scholar 

  37. Yu S H. Nonlinear wave propagation over a Boltzmann shock profile. J Amer Math Soc, 2010, 23: 1040–1118

    Article  MathSciNet  Google Scholar 

  38. Zeng Y N. Thermal non-equilibrium flows in three space dimensions. Arch Rational Mech Anal, 2016, 219: 27–87

    Article  MathSciNet  Google Scholar 

  39. Zeng Y N. L1 asymptotic behavior of compressible isentropic viscous 1-D flow. Comm Pure Appl Math, 1994, 47: 1053–1082

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wu  (吴志刚).

Additional information

Supported by Natural Science Foundation of China (11971100) and Natural Science Foundation of Shanghai (22ZR1402300).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wu, Z. Pointwise Space-Time Behavior of a Compressible Navier-Stokes-Korteweg System in Dimension Three. Acta Math Sci 42, 2113–2130 (2022). https://doi.org/10.1007/s10473-022-0522-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0522-0

Key words

2010 MR Subject Classification

Navigation