Skip to main content
Log in

On the Bounds of the Perimeter of an Ellipse

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we present new bounds for the perimeter of an ellipse in terms of harmonic, geometric, arithmetic and quadratic means; these new bounds represent improvements upon some previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qureshi M I, Akhtar N, Ahamad D. Analytical expressions for curved surface area of revolution and arc-length of an ellipse: A hypergeometric mechanism. Trans Natl Acad Sci Azerb Ser Phys-Tech Math Sci Mathematics, 2020, 40(1): 152–160

    MathSciNet  Google Scholar 

  2. Zhao T H, He Z Y, Chu Y M. On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math, 2020, 5(6): 6479–6495

    Article  MathSciNet  Google Scholar 

  3. Zhao T H, Wang M K, Chu Y M. Concavity and bounds involving generalized ellipic integral of the first kidn. J Math Inequal, 2021, 15(2): 701–724

    Article  MathSciNet  Google Scholar 

  4. Wang M K, Chu H H, Chu Y M. On the approximation of some special functions in Ramanujan’s generalized modular equation with signature 3. Ramanujan J, 2021, 56(1): 1–22

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhao T H, Shi L, Chu Y M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Holder means. Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM, 2020, 114 (2): Article 96

  6. Yang Z H, Qian W M, Chu Y M, Zhang W. On rational bounds for the gamma function. J Inequal Appl, 2017, 2017: Article ID 210

  7. Chu Y M, Zhao T H. Concavity of the error function with respect to Holder means. Math Inequal Appl, 2016, 19(2): 589–595

    MathSciNet  MATH  Google Scholar 

  8. Zhao T H, Qian W M, Chu Y M.: On approximating the arc lemniscate functions. Indian J Pure Appl Math, 2021. https://doi.org/10.1007/s13226-021-00016-9

  9. Li L, Wang W K, Huang L H, Wu J. Some weak flocking models and its application to target tracking. J Math Anal Appl, 2019, 480 (2): Article ID 123404

  10. Zhao T H, Bhayo B A, Chu Y M. Inequalities for generalized Grötzsch ring funciton. Comput Methods Funct Theory, 2021. https://doi.org/10.1007/s40315-021-00415-3

  11. Anderson G D, Qiu S L, Vuorinen M. Precise estimates for differences of the Gaussian hypergeometric function. J Math Anal Appl, 1997, 215(1): 212–234

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu H Z, Qian W M, Chu Y M. Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means. Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM, 2022, 116 (1): Article 21

  13. Anderson G D, Vamanamurthy M K, Vourinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John wiley & Sons, 1997

    Google Scholar 

  14. Chu H H, Zhao T H, Chu Y M. Sharp bounds for the Toadr mean of order 3 in tems of arithmetic, quadratic and contraharmonic means. Math Slovaca, 2020, 70(5): 1097–1112

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao T H, Zhou B C, Wang M K, Chu Y M. On approximating the quasi-arithmetic means. J Inequal Appl, 2019, 2019: Article 42

  16. Zhao T H, Shen Z H, Chu Y M. Sharp power mean bounds for the lemniscate type means. Rev R Acad Cienc Exactas Fiis Nat Ser A Mat RACSAM, 2021, 115 (4): Article 175

  17. Wang M K, Chu Y M, Song Y Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl Math Comput, 2016, 276: 44–60

    MathSciNet  MATH  Google Scholar 

  18. Wang M K, Chu Y M, Jiang Y P. Ramanujan’s cubic transformation inequalities for zero-balanced hyper-geometric functions. Rocky Mountain J Math, 2016, 46(2): 679–691

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang M K, Chu Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math Sci, 2017, 37B(3): 607–622

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang M K, Chu Y M. Landen inequalities for a class of hypergeometric functions with applications. Math Inequal Appl, 2018, 21(2): 521–537

    MathSciNet  MATH  Google Scholar 

  21. Zhao T H, Wang M K, Hai G J, Chu Y M. Landen inequalities for Gaussian hypergeometric function. Rev R Acad Cienc Exactas Fiis Nat Ser A Mat RACSAM, 2021. https://doi.org/10.1007/s13398-021-01197-y

  22. Wang M K, Chu Y M, Zhang W. Monotonicity and inequalities involving zero-balanced hypergeometric function. Math Inequal Appl, 2019, 22(2): 601–617

    MathSciNet  MATH  Google Scholar 

  23. Zhao T H, Wang M K, Zhang W, Chu Y M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl, 2018, 2018: Article 251

  24. Zhou S S, Rashid S, Noor M A, et al. New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Math, 2020, 5(6): 6874–6901

    Article  MathSciNet  Google Scholar 

  25. Li Y X, Rauf A, Naeem M, et al. Valency-based topological properties of linear hexagonal chain and hammer-like benzenoid. Complexity, 2021, 2021: Article ID 9939469

  26. Chen S B, Rashid S, Noor M A, et al. A new approach on fractional calculus and probability density function. AIMS Math, 2020, 5(6): 7041–7054

    Article  MathSciNet  Google Scholar 

  27. Chen S B, Jahanshahi H, Alhadji Abba O, et al. The effect of market confidence on a financial system from the perspective of fractional calculus: numerical investigation and circuit realization. Chaos Solitons Fractals, 2020, 140: Article ID 110223

  28. Chu Y M, Wang M K. Optimal Lehmer mean bounds for the Toader mean. Results Math, 2012, 61: 223–229

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang Z H, Chu Y M, Zhang W. High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl Math Comput, 2019, 348: 552–564

    MathSciNet  MATH  Google Scholar 

  30. Yang Z H, Qian W M, Chu Y M, Zhang W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J Math Anal Appl, 2018, 462(2): 1714–1726

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang Z H. Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means. J Math Anal Appl, 2018, 467: 446–461

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang Y Y, Qian W M, Zhang H W, Chu Y M. Sharp bounds for Toader-type means in terms of two-parameter means, Acta Math Sci, 2021, 41B(3): 719–728

    Article  MathSciNet  Google Scholar 

  33. Wang M K, Chu Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math Sci, 2017, 37B(3): 607–622

    Article  MathSciNet  MATH  Google Scholar 

  34. Qiu S L, Ma X Y, Chu Y M. Extensions of quadratic transformation identities for hypergeometric functions. Math Inequal Appl, 2020, 23(4): 1391–1423

    MathSciNet  MATH  Google Scholar 

  35. Zhao T H, He Z Y, Chu Y M. On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math, 2020, 5(6): 6479–6495

    Article  MathSciNet  Google Scholar 

  36. Qiu S L, Ma X Y, Chu Y M. Sharp Landen transformation inequalities for hypergeometric functions, with applications. J Math Anal Appl, 2019, 474(2): 1306–1337

    Article  MathSciNet  MATH  Google Scholar 

  37. Qian W M, Wang M K, Xu H Z, Chu Y M. Approximations for the complete elliptic integral of the second Kind. Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM, 2021, 115 (2): Article 88

  38. Zhao T H, Wang M K, Chu Y M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev R Acad Cienc Exactas Fíis Nat Ser A Mat RACSAM, 2021, 115 (2): Article 46

  39. Huang X F, Wang M K, Shao H, et al. Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Math, 2020, 5(6): 7071–7086

    Article  MathSciNet  Google Scholar 

  40. Zhao T H, Wang M K, Chu Y M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math, 2020, 5(5): 4512–4528

    Article  MathSciNet  Google Scholar 

  41. Wang M K, Chu Y M, Li Y M, Zhang W. Asymptotic expansion and bounds for complete elliptic integrals. Math Inequal Appl, 2020, 23(3): 821–841

    MathSciNet  MATH  Google Scholar 

  42. Wang M K, Chu H H, Li Y M, Chu Y M. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl Anal Discrete Math, 2020, 14(1): 255–271

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang M K, He Z Y, Chu Y M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput Methods Funct Theory, 2020, 20(1): 111–124

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao T H, He Z Y, Chu Y M. Sharp bounds for weighted Holder mean of the zero-balanced generalized complete elliptic integrals. Comput Methods Funct Theory, 2021, 21(3): 413–426

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang Z H, Qian W M, Zhang W, Chu Y M. Notes on the complete elliptic integral of the first kind. Math Inequal Appl, 2020, 23(1): 77–93

    MathSciNet  MATH  Google Scholar 

  46. Qian W M, He Z Y, Chu Y M. Approximation for the complete elliptic integral of the first kind. Rev R Acad Cienc Exactas Fis Nat Ser A Mat RACSAM, 2020, 114 (2): Article 57

  47. Wang M K, Chu H H, Chu Y M. Precise bounds for the weighted Holder mean of the complete p-elliptic integrals. J Math Anal Appl, 2019, 480 (2): Article ID 123388

  48. Wayne A. A table for computing perimeters of ellipses. Amer Math Monthly, 1944, 51: 219–220

    Article  MathSciNet  MATH  Google Scholar 

  49. Frucht R. On the numerical calculation of the perimeter of an ellipse. Math Notae, 1947, 7: 212–217

    MathSciNet  MATH  Google Scholar 

  50. Gupta R C. Mahāvírācarya on the perimeter and area of an ellipse. Math Education, 1974, 8: B17–B19

    Google Scholar 

  51. Barnard R W, Pearce K, Schovanec L. Inequalities for the perimeter of an ellipse. J Math Anal Appl, 2001, 260(2): 295–306

    Article  MathSciNet  MATH  Google Scholar 

  52. Villarino M B. A note on the accuracy of Ramanujan’s approximative formula for the perimeter of an ellipse. JIPAM J Inequal Pure Appl Math, 2006, 7 (1): Article 21

  53. Chandrupatla T R, Thomas J. The perimeter of an ellipse. Math Sci, 2010, 35(2): 122–131

    MathSciNet  MATH  Google Scholar 

  54. Adlaj S. An eloquent formula for the perimeter of an ellipse. Notices Amer Math Soc, 2012, 59(8): 1094–1099

    Article  MathSciNet  MATH  Google Scholar 

  55. Gusić I. On the bounds for the perimeter of an ellipse. Math Gaz, 2015, 99(546): 540–541

    Article  MathSciNet  Google Scholar 

  56. Hemati S, Beiranvand P, Sharafi M. Ellipse perimeter estimation using non-parametric regression of RBF neural network based on elliptic integral of the second type. Investigaciíon Oper, 2018, 39(4): 639–646

    MathSciNet  Google Scholar 

  57. Vuorinen M. Hypergeometric functions in geometric function theory//Special Functions and Differential Equations. Madras, 1997: 119–126; New Delhi: Allied Publ, 1998

    Google Scholar 

  58. Barnard R W, Pearce K, Richards K C. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J Math Anal, 2000, 31(3): 693–699

    Article  MathSciNet  MATH  Google Scholar 

  59. Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals. J Comput Appl Math, 2004, 172(2): 289–312

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang M K, Chu Y M, Qiu S L, Jiang Y P. Bounds for the perimeter of an ellipse. J Approx Theory, 2012, 164(7): 928–937

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang M K, Chu Y M, Jiang Y P, Qiu S L. Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math Inequal Appl, 2014, 17(1): 101–111

    MathSciNet  MATH  Google Scholar 

  62. He Z Y, Wang M K, Jiang Y P, Chu Y M. Bounds for the perimeter of an ellipse in terms of power means. J Math Inequal, 2020, 14(3): 887–899

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang Z H, Chu Y M. Inequalities for certain means in two arguments. J Inequal Appl, 2015, 2015: Article 299

  64. Qi F. Bounds for the ratio of two gamma functions. J Inequal Appl, 2010, 2010: Article ID 493058

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Chu  (褚玉明).

Additional information

This research was supported by the Natural Science Foundation of China (11971142) and the Natural Science Foundation of Zhejiang Province (LY19A010012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Wang, M. & Chu, Y. On the Bounds of the Perimeter of an Ellipse. Acta Math Sci 42, 491–501 (2022). https://doi.org/10.1007/s10473-022-0204-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0204-y

Key words

2010 MR Subject Classification

Navigation