Skip to main content
Log in

Asymptotic Properties of a Branching Random Walk with a Random Environment in Time

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

We consider a branching random walk in an independent and identically distributed random environment ξ = (ξn) indexed by the time. Let W be the limit of the martingale \(W_n=\int\;e^{-tx}Z_n(\text{d}x)/\mathbb{E}_\xi\int\;e^{-tx}Z_n(\text{d}x)\), with Zn denoting the counting measure of particles of generation n, and \(\mathbb{E}_\xi\) the conditional expectation given the environment ξ. We find necessary and sufficient conditions for the existence of quenched moments and weighted moments of W, when W is non-degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athreya K B, Karlin S. On branching processes in random environments. I: Extinction probabilities. Ann Math Statist, 1971, 42: 1499–152

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya K B, Karlin S. On branching processes in random environments. II: Limit theorems. Ann Math Statist, 1971, 42: 1843–185

    Article  MathSciNet  MATH  Google Scholar 

  3. Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972

    Book  MATH  Google Scholar 

  4. Alsmeyer G, Rösler U. On the existence of ø-moments of the limit of a normalized supercritical Galton- Watson process. J Theor Probab, 2004, 17: 905–92

    Article  MathSciNet  MATH  Google Scholar 

  5. Alsmeyer G, Kuhlbusch D. Double martingale structure and existence of ø-moments for weighted branching processes. M¨unster J Math, 2010, 3: 163–21

    MathSciNet  MATH  Google Scholar 

  6. Barral J. Generalized vector multiplicative cascades. Adv Appl Prob, 2001, 33: 874–89

    Article  MathSciNet  MATH  Google Scholar 

  7. Biggins J D. Martingale convergence in the branching random walk. J Appl Prob, 1977, 14(1): 25–37

    Article  MathSciNet  MATH  Google Scholar 

  8. Biggins J D. Uniform convergence of martingale in the branching random walk. Ann Prob, 1992, 20(1): 137–151

    Article  MathSciNet  MATH  Google Scholar 

  9. Biggins J D, Kyprianou A E. Measure change in multitype branching. Adv Appl Prob, 2004, 36(2): 544–581

    Article  MathSciNet  MATH  Google Scholar 

  10. Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes. I: The Galton-Watson process. Adv Appl Prob, 1974, 6: 711–73

    Article  MathSciNet  MATH  Google Scholar 

  11. Bingham N H, Doney R A. Asymptotic properties of supercritical branching processes. II: Crump-Mode and Jirina process. Adv Appl Prob, 1975, 7: 66–8

    Article  MATH  Google Scholar 

  12. Bingham K H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge Univ Press, 1987

    Book  MATH  Google Scholar 

  13. Chen X, He H. On large deviation probabilities for empirical distribution of branching random walks: Schröder case and Böttcher case. 2017

    Google Scholar 

  14. Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales. New York: Springer, 1995

    MATH  Google Scholar 

  15. Grintsevichyus A K. On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines. Theory Prob Appl, 1974, 19: 163–16

    Article  Google Scholar 

  16. Guivarc’h Y, Liu Q. Proprietes asympotiques des processus de branchement en environnement aleatoire. C R Acad Sci Paris, Ser I. 2001, 332: 339–34

    Article  MATH  Google Scholar 

  17. Huang C. Limit Theorems and the Convergence Rate of Some Branching Processes and Branching Random Walk [D]. Universite de Bretagne-Sud (France), 2010

    Google Scholar 

  18. Huang C, Liu Q. Convergence in L p and its exponential rate for a branching process in a random environment. Electron J Prob, 2014, 104(19): 1–22

    Google Scholar 

  19. Hu Y, Shi Z. Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann Prob, 2009, 37: 742–78

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuhlbusch D. On weighted branching process in random environment. Stoch Prob Appl, 2004, 109(1): 113–144

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Y, Liu Q. Age-dependent Branching processes in random environments. Sci China Ser A, 2008, 51(10): 1807–1830

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang X. Asymptotic Properties of the Mandelbrot’s Martingale and the Branching Random Walks [D]. Universite de Bretagne-Sud (France), 2010

    Google Scholar 

  23. Liang X, Liu Q. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C R Acad Sci Paris, Ser I, 2013, 351: 769–77

    Article  MathSciNet  MATH  Google Scholar 

  24. Liang X, Liu Q. Weighted moments of the limit of a branching process in a random environment. Proc Steklov Inst Math, 2013, 282: 127–14

    Article  MathSciNet  MATH  Google Scholar 

  25. Liang X, Liu Q. Weighted moments for Mandelbrot’s martingales. Electron Commun Probab, 2015, 20(85): 1–12

    MathSciNet  MATH  Google Scholar 

  26. Liu Q. On generalized multiplicascades. Stoc Proc Appl, 2000, 86: 263–28

    Article  Google Scholar 

  27. Liu Q. Branching random walks in random environment // Ji L, Liu K, Yang L, Yau S T, eds. Proceedings of the 4th International Congress of Chinese Mathematicians (ICCM 2007), Vol II. 2007: 702–21

    Google Scholar 

  28. Gao Z, Liu Q. Exact convergence rates in central limit theorems for a branching random walk with a random environment in time. Stoch Proc Appl, 2016, 126: 2634–266

    Article  MathSciNet  MATH  Google Scholar 

  29. Gao Z, Liu Q, Wang H. Central limit theorems for a branching random walk with a random environment in time. Acta Mathematica Scientia, 2014, 34B(2): 501–512

    Article  MathSciNet  MATH  Google Scholar 

  30. Mandelbrot B. Multiplications aléatoires et distributions invaricantes par moyenne pondérée aléatoire. C R Acad Sci Pairs, 1974, 287: 289–292: 355–358

    MATH  Google Scholar 

  31. Shi Z. Branching Random Walks. ´Ecole d’Été de Probabilités de Saint-Flour XLII - 2012. Lecture Notes in Mathematics, Vol 2151. Berlin: Springer, 2015

  32. Wang Y, Li Y, Liu Q, Liu Z. Quenched weighted moments of a supercritical branching process in a random environment. Published in Asian Journal of Mathematics, 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Liu.

Additional information

The work has benefited from the support of the French government Investissements d’Avenir program ANR-11-LABX-0020-01. It has been partially supported by the National Natural Science Foundation of China (11571052, 11401590, 11731012 and 11671404), and by Hunan Natural Science Foundation (2017JJ2271).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Z., Liu, Q. et al. Asymptotic Properties of a Branching Random Walk with a Random Environment in Time. Acta Math Sci 39, 1345–1362 (2019). https://doi.org/10.1007/s10473-019-0513-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0513-y

Key words

2010 MR Subject Classification

Navigation