Skip to main content
Log in

A knowledge compilation perspective on queries and transformations for belief tracking

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Nondeterministic planning is the process of computing plans or policies of actions achieving given goals, when there is nondeterministic uncertainty about the initial state and/or the outcomes of actions. This process encompasses many precise computational problems, from classical planning, where there is no uncertainty, to contingent planning, where the agent has access to observations about the current state. Fundamental to these problems is belief tracking, that is, obtaining information about the current state after a history of actions and observations. At an abstract level, belief tracking can be seen as maintaining and querying the current belief state, that is, the set of states consistent with the history. We take a knowledge compilation perspective on these processes, by defining the queries and transformations which pertain to belief tracking. We study them for propositional domains, considering a number of representations for belief states, actions, observations, and goals. In particular, for belief states, we consider explicit propositional representations with and without auxiliary variables, as well as implicit representations by the history itself; and for actions, we consider propositional action theories as well as ground PDDL and conditional STRIPS. For all combinations, we investigate the complexity of relevant queries (for instance, whether an action is applicable at a belief state) and transformations (for instance, revising a belief state by an observation); we also discuss the relative succinctness of representations. Though many results show an expected tradeoff between succinctness and tractability, we identify some interesting combinations. We also discuss the choice of representations by existing planners in light of our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Geffner, H., Bonet, B.: A concise introduction to models and methods for automated planning. Synth. Lect. Artif. Intell. Mach. Learn. 8(1), 1–141 (2013)

    Google Scholar 

  2. Bonet, B., Geffner, H.: Belief tracking for planning with sensing: Width, complexity and approximations. J. Artif. Intell. Res. 50, 923–970 (2014)

    Article  MathSciNet  Google Scholar 

  3. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)

    Article  MathSciNet  Google Scholar 

  4. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL – The Planning Domain Definition Language – Version 1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, Yale University (1998)

  5. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

    Article  Google Scholar 

  6. Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)

    Article  MathSciNet  Google Scholar 

  7. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search in belief space. In: Chien, S., Kambhampati, S., Knoblock, C.A. (eds.) Proceedings of the 5th International Conference on Artificial Intelligence Planning and Scheduling (AIPS 2000), pp. 52–61. AAAI Press (2000)

  8. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  9. Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning problems with bounded width. J. Artif. Intell. Res. 35, 623–675 (2009)

    Article  MathSciNet  Google Scholar 

  10. Albore, A., Palacios, H., Geffner, H.: Compiling uncertainty away in non-deterministic conformant planning. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 465–470. IOS Press (2010)

  11. Brafman, R.I., Shani, G.: Online belief tracking using regression for contingent planning. Artif. Intell. 241, 131–152 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bertoli, P., Cimatti, A., Roveri, M.: Heuristic search + symbolic model checking = efficient conformant planning. In: Nebel, B. (ed.) Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 467–472. Morgan Kaufmann (2001)

  13. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic planning using decision diagrams. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 279–288 (1999)

  14. Lesner, B., Zanuttini, B.: Efficient policy construction for MDPs represented in probabilistic PDDL. In [56] (2011)

  15. Wang, C., Joshi, S., Khardon, R.: First order decision diagrams for relational MDPs. J. Artif. Intell. Res. 31, 432–472 (2008)

    Article  MathSciNet  Google Scholar 

  16. Nebel, B.: On the compilability and expressive power of propositional planning formalisms. J. Artif. Intell. Res. 12, 271–315 (2000)

    Article  MathSciNet  Google Scholar 

  17. Herzig, A., Lang, J., Marquis, P.: Action representation and partially observable planning using epistemic logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1067–1072. Morgan Kaufmann (2003)

  18. To, S.T., Son, T.C., Pontelli, E.: A generic approach to planning in the presence of incomplete information: Theory and implementation. Artif. Intell. 227, 1–51 (2015)

    Article  MathSciNet  Google Scholar 

  19. Scheck, S., Niveau, A., Zanuttini, B.: Knowledge compilation for nondeterministic action languages. In [57], pp. 308–316 (2021)

  20. Bonet, B.: Conformant plans and beyond: Principles and complexity. Artif. Intell. 174(3–4), 245–269 (2010)

    Article  MathSciNet  Google Scholar 

  21. Rintanen, J.: Complexity of planning with partial observability. In: Zilberstein, S., Koehler, J., Koenig, S. (eds.) Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS 2004), pp. 345–354. AAAI Press (2004)

  22. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning and acting. Cambridge University Press (2016)

  23. Bienvenu, M., Fargier, H., Marquis, P.: Knowledge compilation in the modal logic S5. In: Proceedings of the 25th Conference on Artificial Intelligence (AAAI 2010), pp. 261–266 (2010)

  24. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

  25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Automation of reasoning: 2: Classical papers on computational logic 1967–1970, pp. 466–483 (1983)

  26. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  Google Scholar 

  27. Hoffmann, J., Brafman, R.I.: Conformant planning via heuristic forward search: A new approach. Artif. Intell. 170(6–7), 507–541 (2006)

    Article  MathSciNet  Google Scholar 

  28. Bonet, B., Geffner, H.: mGPT: A probabilistic planner based on heuristic search. J. Artif. Intell. Res. 24, 933–944 (2005)

    Article  Google Scholar 

  29. Geffner, H.: Functional Strips: A more flexible language for planning and problem solving. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, volume 597 of Kluwer International Series In Engineering And Computer Science, chap. 9, pp. 187–209. Kluwer, Dordrecht (2000)

  30. Bertoli, P., Cimatti, A.: Improving heuristics for planning as search in belief space. In: Ghallab, M., Hertzberg, J., Traverso, P. (eds.) Proceedings of the 6th International Conference on Artificial Intelligence Planning and Scheduling (AIPS 2002). AAAI Press (2002)

  31. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief space search. J. Artif. Intell. Res. 26, 35–99 (2006)

    Article  Google Scholar 

  32. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A new symbolic model checker. Int. J. Softw. Tools Technol. Transfer 2, 410–425 (2000)

    Article  Google Scholar 

  33. To, S., Pontelli, E., Son, T.: A conformant planner with explicit disjunctive representation of belief states. In: Gerevini, A., Howe, A., Cesta, A., Refanidis, I. (eds.) Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS 2009). AAAI Press (2009)

  34. To, S.T., Son, T.C., Pontelli, E.: A new approach to conformant planning using CNF. In: Brafman, R., Geffner, H., Hoffmann, J., Kautz, H. (eds.) Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010). AAAI Press (2010)

  35. To, S.T., Son, T.C., Pontelli, E.: Contingent planning as and/or forward search with disjunctive representation. In [56] (2011)

  36. Albore, A., Ramirez, M., Geffner, H.: Effective heuristics and belief tracking for planning with incomplete information. In [56] (2011)

  37. Kautz, H., Selman, B., Hoffmann, J.: SatPlan: Planning as satisfiability. In: 5th International Planning Competition (IPC-5): Planner Abstracts (2006)

  38. Rintanen, J.: Constructing conditional plans by a theorem-prover. J. Artif. Intell. Res. 10, 323–352 (1999)

    Article  MathSciNet  Google Scholar 

  39. Cimatti, A., Roveri, M., Bertoli, P.: Conformant planning via symbolic model checking and heuristic search. Artif. Intell. 159(1–2), 127–206 (2004)

    Article  MathSciNet  Google Scholar 

  40. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by counting models on compiled d-DNNF representations. In: Biundo, S., Myers, K., Rajan, K. (eds.) Proceedings of the Fifteenth International Conference on Automated Planning and Scheduling (ICAPS 2005). AAAI Press (2005)

  41. Palacios, H., Geffner, H.: Mapping conformant planning into SAT through compilation and projection. In: Proceedings of the 11th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2005), pp. 311–320. Springer (2006)

  42. Palacios, H.: The quantified boolean formulas satisfiability library. Conformant family problems. http://www.qbflib.org/family_detail.php?idFamily=707 (2007). Accessed 2 Feb 2023

  43. Grastien, A., Scala, E.: CPCES: A planning framework to solve conformant planning problems through a counterexample guided refinement. Artif. Intell. 284, 103271 (2020)

    Article  MathSciNet  Google Scholar 

  44. Scala, E., Grastien, A.: Non-deterministic conformant planning using a counterexample-guided incremental compilation to classical planning. In [57] (2021)

  45. Bonet, B., Geffner, H.: Flexible and scalable partially observable planning with linear translations. In: Chien, S., Fern, A., Ruml, W., Do, M. (eds.) Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS 2014). AAAI Press (2014b)

  46. Brafman, R. I., Shani, G.: A multi-path compilation approach to contingent planning. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012), pp 1868–1874. AAAI Press (2012a)

  47. Brafman, R.I., Shani, G.: Replanning in domains with partial information and sensing actions. J. Artif. Intell. Res. 45, 565–600 (2012)

    Article  MathSciNet  Google Scholar 

  48. Yoon, S., Fern, A., Givan, R.: FF-Replan: A baseline for probabilistic planning. In: Boddy, M., Fox, M., Thiébaux, S. (eds.) Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 352–360. AAAI Press (2007)

  49. Muise, C., McIlraith, S.A., Beck, J.C. (2011). Monitoring the execution of partial-order plans via regression. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011). AAAI Press (1998)

  50. Niveau, A., Zanuttini, B.: Efficient representations for the modal logic S5. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016) (2016)

  51. Corrêa, A.B., Pommerening, F., Helmert, M., Francès, G.: Lifted successor generation using query optimization techniques. In: Beck, J.C., Karpas, E., Sohrabi, S. (eds.) Proceedings of the 30th International Conference on Automated Planning and Scheduling (ICAPS 2020), pp. 80–89. AAAI Press (2020)

  52. Lauer, P., Torralba, Á., Fišer, D., Höller, D., Wichlacz, J., Hoffmann, J.: Polynomial-time in PDDL input size: Making the delete relaxation feasible for lifted planning. In: Zhou, Z.H. (ed.), Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021). IJCAI (2021)

  53. Martín, M., Geffner, H.: Learning generalized policies from planning examples using concept languages. Artif. Intell. 20(1), 9–19 (2004)

    Google Scholar 

  54. Segovia, J., Jiménez, S., Jonsson, A.: Generalized planning with procedural domain control knowledge. In: Coles, A., Coles, A., Edelkamp, S., Magazzeni, D., Sanner, S. (eds.) Proceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS 2016), pp. 285–293. AAAI Press (2016)

  55. Segovia-Aguas, J., Jiménez, S., Jonsson, A.: Generating context-free grammars using classical planning. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 4391–4397. IJCAI (2017)

  56. Bacchus, F., Domshlak, C., Edelkamp, S., Helmert, M. (eds.): Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS 2011). AAAI Press (2011)

  57. Goldman, R.P., Biundo, S., Katz, M. (eds.): Proceedings of the 31st International Conference on Automated Planning and Scheduling (ICAPS 2021). AAAI Press (2021)

Download references

Funding

This work has been supported by the French National Research Agency (ANR) through project PING/ACK (ANR-18-CE40-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Zanuttini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niveau, A., Palacios, H., Scheck, S. et al. A knowledge compilation perspective on queries and transformations for belief tracking. Ann Math Artif Intell (2024). https://doi.org/10.1007/s10472-023-09908-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10472-023-09908-4

Keywords

Mathematics Subject Classification (2010)

Navigation