Skip to main content

Advertisement

Log in

The undecidability of proof search when equality is a logical connective

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

One proof-theoretic approach to equality in quantificational logic treats equality as a logical connective: in particular, term equality can be given both left and right introduction rules in a sequent calculus proof system. We present a particular example of this approach to equality in a first-order logic setting in which there are no predicate symbols (apart from equality). After we illustrate some interesting applications of this logic, we show that provability in this logic is undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput Logic 13(1), 2:1–2:44 (2012)

    Article  MathSciNet  Google Scholar 

  2. Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur, G., Tiu, A., Wang, Y., Abella: A system for reasoning about relational specifications. J. Formal. Reason. 7(2), 1–89 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model checking over syntactic expressions. In: Pfenning, F. (ed.) 21th Conf. on Automated Deduction (CADE), number 4603 in LNAI, pp 391–397. Springer, New York (2007)

  4. Barbuti, R., Mancarella, P., Pedreschi, D., Turini, F.: Intensional negation of logic programs examples and implementation techniques. In: Proc. of the TAPSOFT ’87, Number 250 in LNCS, pp 96–110. Springer (1987)

  5. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 354–363 (1936)

    Article  MathSciNet  Google Scholar 

  6. Clark, K.L.: Negation as failure. In: Gallaire, J., Minker, J. (eds.) Logic and Data Bases, pp 293–322. Plenum Press, New York (1978)

  7. Farmer, W.M.: The Kreisel length-of-proof problem. Ann. Math. Artif. Intell 6(1-3), 27–55 (1992)

    Article  MathSciNet  Google Scholar 

  8. Gacek, A., Miller, D., Nadathur, G.: Nominal abstraction. Inf. Comput. 209(1), 48–73 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper & Row, New York (1986)

    MATH  Google Scholar 

  10. Gallier, J.H., Raatz, S., Snyder, W.: Theorem Proving Using Rigid E-unification: Equational Matings. In: 2nd Symp. on Logic in Computer Science, pp 338–346. IEEE Computer Society Press, Washington (1987)

  11. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen. Translation of articles that appeared in 1934-35. Collected papers appeared in 1969, pp 68–131. North-Holland, Amsterdam (1935)

  12. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)

    Article  MathSciNet  Google Scholar 

  13. Girard, J.-Y.: A fixpoint theorem in linear logic an email posting archived at https://www.seas.upenn.edu/sweirich/types/archive/1992/msg00030.html to the linear@cs.stanford.edumailing list (1992)

  14. Goldfarb, W.: The undecidability of the second-order unification problem. Theor. Comput. Sci. 13, 225–230 (1981)

    Article  MathSciNet  Google Scholar 

  15. Heath, Q., Miller, D.: A proof theory for model checking. J. Automat. Reason. 63(4), 857–885 (2019)

    Article  MathSciNet  Google Scholar 

  16. Huet, G.P.: A unification algorithm for typed λ-calculus. Theor. Comput. Sci. 1, 27–57 (1975)

    Article  Google Scholar 

  17. Krajícek, J., Pudlák, P.: The number of proof lines and the size of proofs in first order logic. Arch. Math. Log 27(1), 69–84 (1988)

    Article  MathSciNet  Google Scholar 

  18. Maher, M.J.: Complete axiomatizations of the algebras of finite rational and infinite trees. In: 3nd Symp. on Logic in Computer Science, pp 348–357 (1988)

  19. Matiyasevich, Y.: Hilbert’s tenth problem and paradigms of computation. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE: Computing in Europe, number 3526 in LNCS, pp 310–321. Springer (2005)

  20. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)

    MATH  Google Scholar 

  21. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theor. Comput. Sci. 232, 91–119 (2000)

    Article  MathSciNet  Google Scholar 

  22. Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. J. Logic Computat. 1(4), 497–536 (1991)

    Article  MathSciNet  Google Scholar 

  23. Miller, D.: Unification under a mixed prefix. J. Symb. Comput. 14 (4), 321–358 (1992)

    Article  MathSciNet  Google Scholar 

  24. Miller, D., Nadathur, G.: Programming with Higher-Order logic. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  25. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Trans. Computat. Logic 6(4), 749–783 (2005)

    Article  MathSciNet  Google Scholar 

  26. Momigliano, A., Pfenning, F.: Higher-order pattern complement and strict λ-calculus. ACM Trans. Computat. Logic 4(4), 493–529 (2003)

    Article  MathSciNet  Google Scholar 

  27. Nadathur, G.: A proof procedure for the logic of hereditary Harrop formulas. J. Autom. Reason. 11(1), 115–145 (1993)

    Article  MathSciNet  Google Scholar 

  28. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Number 828 in science & business media springer, Berlin (1994)

    Book  Google Scholar 

  29. Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) 8th Symp. on Logic in Computer Science, pp 222–232. IEEE Computer Society Press, IEEE, Piscataway (1993)

  30. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)

    MathSciNet  MATH  Google Scholar 

  31. Viel, A., Miller, D.: Proof search when equality is a logical connective Unpublished draft presented to the International Workshop on Proof-Search in Type Theories (2010)

  32. Voronkov, A.: Simultaneous rigid E-unification and other decision problems related to the Herbrand theorem. Theor. Comput. Sci. 224(1-2), 319–352 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Miller.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, D., Viel, A. The undecidability of proof search when equality is a logical connective. Ann Math Artif Intell 90, 523–535 (2022). https://doi.org/10.1007/s10472-021-09764-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-021-09764-0

Keywords

Mathematics Subject Classification (2010)

Navigation