Skip to main content
Log in

Can one design a geometry engine?

On the (un)decidability of certain affine Euclidean geometries

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We survey the status of decidability of the first order consequences in various axiomatizations of Hilbert-style Euclidean geometry. We draw attention to a widely overlooked result by Martin Ziegler from 1980, which proves Tarski’s conjecture on the undecidability of finitely axiomatizable theories of fields. We elaborate on how to use Ziegler’s theorem to show that the consequence relations for the first order theory of the Hilbert plane and the Euclidean plane are undecidable. As new results we add:

(A):

The first order consequence relations for Wu’s orthogonal and metric geometries (Wen-Tsün Wu, 1984), and for the axiomatization of Origami geometry (J. Justin 1986, H. Huzita 1991) are undecidable.

It was already known that the universal theory of Hilbert planes and Wu’s orthogonal geometry is decidable. We show here using elementary model theoretic tools that

(B):

the universal first order consequences of any geometric theory T of Pappian planes which is consistent with the analytic geometry of the reals is decidable.

The techniques used were all known to experts in mathematical logic and geometry in the past but no detailed proofs are easily accessible for practitioners of symbolic computation or automated theorem proving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s elements. Rev. Symb. Log. 2(4), 700–768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alperin, R.C.: A mathematical theory of origami constructions and numbers. New York J. Math. 6(119), 133 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Artin, E.: Geometric Algebra, volume 3 of Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers (1957)

  4. Artin, E.: Coordinates in affine geometry. In: Collected Papers of E. Artin, pp. 505–510. Springer, 1965. Originally: Notre Dame Math. Coll (1940)

  5. Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symb. Log. 5(2), 175–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baldwin, J.T.: Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert. Philosophia Mathematicas (2017)

  7. Baldwin, J.T.: Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski Philosophia Mathematica (2017)

  8. Baldwin, J.T.: Model Theory and the Philosophy of Mathematical Practice. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  9. Basu, S.: Algorithms in real algebraic geometry: a survey. arXiv:1409.1534 (2014)

  10. Boutry, P., Braun, G., Narboux, J.: Formalization of the arithmetization of euclidean plane geometry and applications. J. Symb. Comput. 90, 149–168 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blum, L., Cucker, F, Shub, M., Smale, S.: Complexity and Real Computation. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  12. Beeson, M.: Some undecidable field theories. Translation of [78]. Available at www.michaelbeeson.com/research/papers/Ziegler.pdf

  13. Beeson, M.: Proof and computation in geometry. In: International Workshop on Automated Deduction in Geometry, 2012, vol. 7993 of LNAI, pp. 1–30. Springer (2013)

  14. Beeson, M.: Proving Hilbert’S Axioms in Tarski Geometry, 2014. Manuscript Posted on pdfs.semanticscholar.org

  15. Beth, E.W.: The Foundations of Mathematics: A Study in the Philosophy of Science, 2nd edn. Elsevier, Amsterdam (1964)

  16. Balbiani, P., Goranko, V., Kellerman, R., Vakarelov, D.: Logical Theories for Fragments of Elementary Geometry. Handbook of Spatial Logics, pp. 343–428 (2007)

  17. Barrett, T.W., Halvorson, H.: Morita equivalence. Rev. Symb. Log. 9(3), 556–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barrett, T.W., Halvorson, H.: From geometry to conceptual relativity. Erkenntnis 82(5), 1043–1063 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Blumenthal, L.M.: A Modern View of Geometry. Courier Corporation (1980)

  20. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  21. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-order Logic, a Language Theoretic Approach. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  22. Caviness, B.F., Johnson, J.R.: Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer Science & Business Media (2012)

  23. Carlson, J.A., Jaffe, A., Wiles, A.: The Millennium Prize Problems. American Mathematical Soc. (2006)

  24. Descartes, R.: A discourse on the method of correctly conducting one’s reason and seeking truth in the sciences. Oxford University Press, 2006. Annotated new translation of the 1637 original by Ian Maclean

  25. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5, 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Enderton, H., Enderton, H.B.: A Mathematical Introduction to Logic. Elsevier, Amsterdam (2001). Reprint

    MATH  Google Scholar 

  27. Friedman, H.M., Visser, A.: When bi-interpretability implies synonymy. Logic Group Preprint Series 320, 1–19 (2014)

    Google Scholar 

  28. Gelernter, H.: Realization of a geometry theorem proving machine. In: IFIP Congress, pp. 273–281 (1959)

  29. Gelernter, H., Hansen, J.R., Loveland, D.W.: Empirical explorations of the geometry theorem machine. In: Papers Presented at the May 3-5, 1960, Western Joint IRE-AIEE-ACM Computer Conference, pp. 143–149. ACM (1960)

  30. Ghourabi, F., Ida, T., Takahashi, H., Marin, M., Kasem, A.: Logical and algebraic view of Huzita’s origami axioms with applications to computational origami. In: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 767–772. ACM (2007)

  31. Hilbert, D., Ackermann, W.: Principles of Mathematical Logic. Chelsea Publishing company (1950)

  32. Hall, M.: Projective planes. Trans. Am. Math. Soc. 54(2), 229–277 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hartshorne, R.: Geometry: Euclid and Beyond. Springer (2000)

  34. Hilbert, D.: Grundlagen der geometrie. Latest reprint 2013: Springer-verlag, 1899 originally published in (1899)

  35. Hilbert, D.: The Foundations of Geometry. Open Court Publishing Company (1902)

  36. Hilbert, D.: Foundations of Geometry Second Edition, translated from the Tenth Edition, revised and enlarged by Dr Paul Bernays. The Open Court Publishing Company, La Salle, Illinois (1971)

    Google Scholar 

  37. Hodges, W.: Model Theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  38. Hauschild, K., Rautenberg, W.: Rekursive unentscheidbarkeit der theorie der pythagoräischen körper. Fundam. Math. 82(3), 191–197 (1974)

    Article  MATH  Google Scholar 

  39. Ivanov, N.V.: Affine planes, ternary rings, and examples of non-desarguesian planes. arXiv:1604.04945 (2016)

  40. Justin, J.: Résolution par le pliage de équation du troisieme degré et applications géométriques. In: Proceedings of the First International Meeting of Origami Science and Technology, pp. 251–261. Ferrara, Italy (1989)

  41. Kapur, D.: A refutational approach to geometry theorem proving. Artif. Intell. 37(1-3), 61–93 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Koenigsmann, J.: Defining \(\mathbb {Z}\) in \(\mathbb {Q}\). Ann. Math. 183(1), 73–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Koenigsmann, J.: On a question of Abraham Robinson. Israel J. Math. 214(2), 931–943 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Makowsky, J.A.: Algorithmic uses of the feferman-Vaught theorem. Ann. Pure Appl. Log. 126.1-3, 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Makowsky, J.A.: Topics in automated theorem proving, 1989-2015. Course 236 714, Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel, available at http://www.cs.technion.ac.il/janos/COURSES/THPR-2015/

  46. Miller, N.: Euclid and his Twentieth Century Rivals: Diagrams in the Logic of Euclidean Geometry. CSLI Publications Stanford (2007)

  47. MacintyreAngus, A., McKenna, K., Van den Dries, L.L.: Elimination of quantifiers in algebraic structures. Adv. Math. 47(1), 74–87 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pambuccian, V.: Ternary operations as primitive notions for constructive plane geometry v. Math. Log. Q. 40(4), 455–477 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pambuccian, V.: Orthogonality as a single primitive notion for metric planes. Contributions to Algebra and Geometry 49, 399–409 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Pambuccian, V.: Axiomatizing geometric constructions. J. Appl. Log. 6(1), 24–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pillay, A.: An Introduction to Stability Theory. Courier Corporation (2008)

  52. Poizat, B.: Les Petits Cailloux: Une Approche Modèle-Théorique De L’algorithmie, Aléas, Paris (1995)

  53. Prunescu, M.: Fast quantifier elimination means p= np. In: Logical Approaches to Computational Barriers: Second Conference on Computability in Europe, Cie 2006, Swansea, UK, June 30-July 5, 2006, Proceedings, vol. 3988, pp. 459. Springer Science & Business Media (2006)

  54. Rabin, M.O.: A simple method for undecidability proofs and some applications. In: Bar-Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science, pp. 58–68. North-Holland Publishing Company (1965)

  55. Rautenberg, W.: Unentscheidbarkeit der Euklidischen Inzidenzgeometrie. Math. Log. Q. 7(1-5), 12–15 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rautenberg, W.: ÜBer metatheoretische Eigenschaften einiger geometrischer Theorien. Math. Log. Q. 8(1-5), 5–41 (1962)

    Article  MATH  Google Scholar 

  57. Robinson, J.: Definability and decision problems in arithmetic. J. Symb. Log. 14(2), 98–114 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rooduijn, J.M.W.: Translating Theories. B.S. thesis, Universiteit Utrecht (2015)

  59. Solovay, R.M., Arthan, R.D., Harrison, J.: Some new results on decidability for elementary algebra and geometry. Ann. Pure Appl. Log. 163(12), 1765–1802 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Schur, F.: Grundlagen der Geometrie. BG Teubner (1909)

  61. Shoenfield, J.: Mathematical Logic Addison-Wesley Series in Logic. Addison-Wesley (1967)

  62. Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  63. Steinitz, E.: Algebraische Theorie der Körper. Journal fúr reine und angewandte Mathematik 137, 167–309 (1910)

    MathSciNet  MATH  Google Scholar 

  64. Shlapentokh, A., Videla, C.: Definability and decidability in infinite algebraic extensions. Ann. Pure Appl. Log. 165(7), 1243–1262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Szczerba, L.W.: Interpretability of elementary theories. In: Logic, Foundations of Mathematics, and Computability Theory, pp.129–145. Springer (1977)

  66. Szmielew, W.: From Affine to Euclidean Geometry, an Axiomatic Approach. Polish Scientific Publishers (Warszawa-Poland) and D. Reidel Publishing Company, Dordrecht-Holland (1983)

    MATH  Google Scholar 

  67. Tarski, A.: Sur les ensembles définissables de nombre réels. Fundam. Math. 17, 210–239 (1931)

    Article  MATH  Google Scholar 

  68. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1951)

  69. Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. Studies in Logic and the Foundations of Mathematics. North Holland (1953)

  70. Visser, A.: Categories of theories and interpretations. Logic Group Preprint Series, 228 (2004)

  71. Visser, A.: Categories of Theories and Interpretations. In: Logic in Tehran. Proceedings of the workshop and conference on Logic, Algebra and Arithmetic, held October 18–22 (2006)

  72. von Staudt, K.G.C.: Geometrie der lage. Bauer und Raspe (1847)

  73. von Staudt, K.G.C.: Beiträge zur Geometrie der Lage, vol. 2. F. Korn (1857)

  74. Wu, W., Gao, X.: Mathematics mechanization and applications after thirty years. Frontiers of Computer Science in China 1(1), 1–8 (2007)

    Article  Google Scholar 

  75. Wikipedia: Huzita-Hatori axioms. Wikipedia entry: https://en.wikipedia.org/wiki/Huzita-Hatori_axioms

  76. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 2(3), 221–252 (1986)

    Article  MATH  Google Scholar 

  77. Wu, W.-T.: Mechanical Theorem Proving in Geometries. Springer, Berlin (1994). (original in chinese 1984)

    Book  Google Scholar 

  78. Ziegler, M.: Einige unentscheidbare Körpertheorien. In: Strassen, V., Engeler, E. , Läuchli, H. (eds.) Logic and Algorithmic, An international Symposium Held in Honour of E. Specker, pp. 381–392. L’enseignement mathematiqué (1982)

  79. Zorn, M.: Eleventh meeting of the association for symbolic logic. J. Symb. Log. 14(1), 73–80 (1949). ASL

    Article  Google Scholar 

Download references

Acknowledgments

This paper has its origin in my lecture notes on automated theorem proving [45], developed in the last 15 years. I was motivated to develop this material further, when I prepared a lecture on P. Bernays and the foundations of geometry, which I gave at the occasion of the unveiling in summer 2017 of a plaque at the house where P. Bernays used to live in Göttingen, before going into forced exile in 1933. P. Bernays edited Hilbert’s [35] from the 5th (1922) till the 10th edition (1967), see also [34, 36]. I am indebted to R. Kahle, who invited me to give this lecture. Without this invitation this paper would not have been written.

I was lucky enough to know P. Bernays personally, as well as some other pioneers of the modern foundations of geometry, among them R. Baer, H. Lenz, W. Rautenberg, W. Schwabhäuser, W. Szmielew and A. Tarski. I dedicate this paper to them, and to my wonderful teacher of descriptive geometry, M. Herter, at the Gymnasium Freudenberg during 1961-1967 in Zurich, Switzerland. Blessed be their memory.

I would also like to thank L. Kovacs and P. Schreck for their patience and flexibility concerning the deadline for submitting this paper to the special issue on Formalization of Geometry and Reasoning of the Annals of Mathematics and Artificial Intelligence. Special thanks are due to five anonymous referees and to J. Baldwin for critical remarks and suggestions, as well as for pointing out various imprecise statements, which I hope were all corrected.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann A. Makowsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makowsky, J.A. Can one design a geometry engine?. Ann Math Artif Intell 85, 259–291 (2019). https://doi.org/10.1007/s10472-018-9610-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9610-1

Keywords

Mathematics Subject Classification (2010)

Navigation