Skip to main content
Log in

Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Global sensitivity analysis aims at quantifying respective effects of input random variables (or combinations thereof) onto variance of a physical or mathematical model response. Among the abundant literature on sensitivity measures, Sobol indices have received much attention since they provide accurate information for most of models. We consider a problem of experimental design points selection for Sobol’ indices estimation. Based on the concept of D-optimality, we propose a method for constructing an adaptive design of experiments, effective for calculation of Sobol’ indices based on Polynomial Chaos Expansions. We provide a set of applications that demonstrate the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J.Beven.: Rainfall-runoff Modelling. The Primer, p. 360. Wiley, Chichester (2000)

    Google Scholar 

  2. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, Cambridge, MA) (2001)

  3. Grihon, S., Burnaev, E.V., Belyaev, M.G., Prikhodko, P.V. In: Koziel, S., Leifsson, L. (eds.) : Surrogate Modeling of Stability Constraints for Optimization of Composite Structures. Surrogate-Based Modeling and Optimization. Engineering applications, pp. 359–391. Springer (2013)

  4. Saltelli, A., Chan, K., Scott, M.: Sensitivity Analysis. Probability and Statistics Series. West Sussex: Wiley (2000)

  5. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)

    Article  Google Scholar 

  6. Iooss, B., Lemaitre, P.: A Review on Global Sensitivity Analysis Methods. In: Meloni, C, Dellino, G (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications. Springer (2015)

  7. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.: Global sensitivity analysis - the primer wiley (2008)

  8. Yang, J.: Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ. Model. Softw. 26, 444–457 (2011)

    Article  Google Scholar 

  9. Belyaev, M., Burnaev, E., Kapushev, E., Panov, M., Prikhodko, P., Vetrov, D., Yarotsky, D.: GTApprox: Surrogate modeling for industrial design. Adv. Eng. Softw. 102, 29–39 (2016)

    Article  Google Scholar 

  10. Sudret, B.: Polynomial chaos expansions and stochastic finite element methods. Risk and Reliability in Geotechnical Engineering, chapter 6(K.K. Phoon, J. Ching (Eds.)), pp. 265?300. Taylor and Francis. (2015)

  11. Sobol’, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comp. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Saltelli, A., Annoni, P.: How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 25, 1508–1517 (2010)

    Article  Google Scholar 

  13. Cukier, R.I., Levine, H.B., Shuler, K.E.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26(1), 1–42 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, vol. 55 (2001)

  15. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 36, 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  16. Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of the Sobol indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94, 742–751 (2009)

    Article  Google Scholar 

  17. Burnaev, E., Zaitsev, A., Spokoiny, V.: Properties of the posterior distribution of a regression model based on Gaussian random fields. Autom. Remote. Control. 74 (10), 1645–1655 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burnaev, E., Zaytsev, A., Spokoiny, V.: The Bernstein-von Mises theorem for regression based on Gaussian processes. Russ. Math. Surv. 68(5), 954–956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Burnaev, E., Panov, M., Zaytsev, A.: Regression on the Basis of Nonstationary Gaussian Processes with Bayesian Regularization. J. Commun. Technol. Electron. 61 (6), 661–671 (2016)

    Article  Google Scholar 

  20. Belyaev, M., Burnaev, E., Kapushev, Y.: Gaussian process regression for structured data sets. In: Gammerman, A., et al (eds.) Lecture Notes in Artificial Intelligence. Proceedings of SLDS 2015, vol. 9047, pp. 106–115. Springer, London, UK (2015)

  21. Burnaev, E., Belyaev, M., Kapushev, E.: Computationally efficient algorithm for Gaussian Processes based regression in case of structured samples. Journal of Computational Mathematics and Mathematical Physics 56(4), 499–513 (2016)

    Article  MATH  Google Scholar 

  22. Dubreuila, S., Berveillerc, M., Petitjeanb, F., Salauna, M.: Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion. Reliab. Eng. Syst. Saf. 121, 263–275 (2014)

    Article  Google Scholar 

  23. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Ghiocel, D., Ghanem, R.: Stochastic finite element analysis of seismic soil-structure interaction. J. Eng. Mech. 128, 66–77 (2002)

    Article  Google Scholar 

  25. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  26. Blatman, G., Sudret, B.: Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 95, 1216–1229 (2010)

    Article  Google Scholar 

  27. Blatman, G., Sudret, B.: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25, 183–197 (2010b)

  28. Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite elements: a non intrusive approach by regression. Eur. J. Comput. Mech. 15(1–3), 81–92 (2006)

    MATH  Google Scholar 

  29. Hastie, T., Tibshirani, R., Friedman, J.: Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer–Verlag, New York (2009)

  30. Oehlert, G.W.: A note on the delta method. The American Statistician, 46 (1992)

  31. O’Hagan, A.: Polynomial Chaos: A tutorial and critique from a statistician’s perspective. Technical report, university of sheffield UK (2013)

  32. Chaloner, K., Verdinelli, I.: Bayesian Experimental Design: A Review. Stat. Sci. 10, 273–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pronzato, L.: One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal. Metrika 71(2), 219–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miller, A., Nguyen, N.K.: Algorithm AS 295: A Fedorov Exchange Algorithm for D-Optimal Design. J. R. Stat. Soc.: Ser. C: Appl. Stat. 43(4), 669–677 (1994). Wiley

    Google Scholar 

  35. Welch, B.L.: The generalization of Student’s problem when several different population variances are involved. Biometrika 34(1–2), 28–35 (1947)

    MathSciNet  MATH  Google Scholar 

  36. Burnaev, E., Panin, I.: Adaptive Design of Experiments for Sobol Indices Estimation Based on Quadratic Metamodel. In: Gammerman, A. et al. (eds.) Lecture Notes in Artificial Intelligence. Proceedings of SLDS, London, UK, April 20–23, 2015, vol. 9047, pp. 86–96. Springer (2015)

  37. Burnaev, E., Panov, M.: Adaptive design of experiments based on gaussian processes. In: Gammerman, A. et al. (eds.) Lecture Notes in Artificial Intelligence. Proceedings of SLDS, London, UK, April 20–23 2015, vol. 9047, pp. 116–126. Springer (2015)

  38. Forrester, A., Sobester, A., Keane, A.: Engineering design via surrogate modelling: a practical guide. Wiley (2008)

  39. Lee, S., Kwak, B.: Response surface augmented moment method for efficient reliability analysis. Struct. Safe. 28, 261–272 (2006)

    Article  Google Scholar 

  40. Konakli, K., Sudret, B.: Uncertainty quantification in high-dimensional spaces with low-rank tensor approximations Proceedings 1st ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, Crete Island, Greece (2015)

  41. Li, C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)

    Article  Google Scholar 

  42. Worley, B.A.: Deterministic Uncertainty Analysis, ORNL-6428, available from National Technical Information Service, 5285 Port Royal Road, Spring VA 22161 (1987)

  43. Moon, H., Dean, A.M., Santner, T.J.: Two-stage sensitivity-based group screening in computer experiments. Technometrics 54(4), 376–387 (2012)

    Article  MathSciNet  Google Scholar 

  44. Bliznyuk, N., Ruppert, D., Shoemaker, Regis, R., Wild, S., Mugunthan, P.: Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. Journal of Computational and Graphical Statistics, 17(2) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Panin.

Additional information

The research of E. Burnaev and I. Panin was supported by the Russian Science Foundation grant (project 14-50-00150).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnaev, E., Panin, I. & Sudret, B. Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions. Ann Math Artif Intell 81, 187–207 (2017). https://doi.org/10.1007/s10472-017-9542-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-017-9542-1

Keywords

Mathematics Subject Classification (2010)

Navigation