Skip to main content
Log in

A floating memristor emulator for analog and digital applications with experimental results

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

A Correction to this article was published on 27 February 2024

This article has been updated

Abstract

This paper presented a flux controlled memristor using the most versatile analog block, a single Operational Amplifier (Op-Amp), an N-channel metal–oxide–semiconductor field-effect transistor (MOSFET), and four passive elements. The following benefits are offered by the suggested memristor design: (1) a lesser number of active and passive elements; (2) floating nature of the circuit; (3) wide-operating frequency range (200 Hz–20 kHz); and (4) simple and versatile design. The performance evaluation through simulation of the proposed memristor model including post-layout simulation of silicon components (Op-Amp and NMOS transistor (\(M\))) is verified with Cadence Virtuoso tool using standard CMOS 90 nm technology. In addition, the application of the proposed memristor in the field of analog and digital are also shown in the paper. Furthermore, the proposed circuit verification is also carried out experimentally using off-the-shelf components (IC LM741 and 2N6659) along with passive components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223. https://doi.org/10.1109/PROC.1976.10092

    Article  MathSciNet  Google Scholar 

  3. Chua, L. O. (2009). Introduction to memristors. IEEE Expert Now Educational Course

  4. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83. https://doi.org/10.1038/nature06932.Erratum.In:Nature.2009Jun25;459(7250):1154. PMID: 18451858.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Di Ventra, M., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97(10), 1717–1724. https://doi.org/10.1109/JPROC.2009.2021077

    Article  CAS  Google Scholar 

  6. Yin, Z., Tian, H., Chen, G., & Chua, L. O. (2015). What are memristor, memcapacitor, and meminductor? IEEE Transactions on Circuits and Systems II: Express Briefs, 62(4), 402–406. https://doi.org/10.1109/TCSII.2014.2387653

    Article  Google Scholar 

  7. Esch, J. (2009). Prolog to: circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97(10), 1715–1716. https://doi.org/10.1109/JPROC.2009.2027660

    Article  Google Scholar 

  8. Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021. https://doi.org/10.1109/TCSI.2013.2256171

    Article  Google Scholar 

  9. Biolek, D., Biolek, Z., & Biolkova, V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. In: 2009 European Conference on Circuit Theory and Design (pp 249–252). IEEE. https://doi.org/10.1109/ECCTD.2009.5274934.

  10. Almurib, H. A. F., Kumar, T. N., & Lombardi, F. (2016). Design and evaluation of a memristor-based look-up table for non-volatile field programmable gate arrays. IET Circuits, Devices and Systems, 10(4), 292–300.

    Article  Google Scholar 

  11. Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  12. Adam, G. C., Hoskins, B. D., Prezioso, M., Merrikh-Bayat, F., Chakrabarti, B., & Strukov, D. B. (2017). 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Transactions on Electron Devices, 64(1), 312–318.

    Article  ADS  Google Scholar 

  13. Driscoll, T., et al. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502.

    Article  ADS  Google Scholar 

  14. Sharma, P. K., Ranjan, R. K., Khateb, F., & Kumngern, M. (2020). Charged controlled mem-element emulator and its application in a chaotic system. IEEE Access, 8, 171397–171407. https://doi.org/10.1109/ACCESS.2020.3024769

    Article  Google Scholar 

  15. Vourkas, I., Abusleme, A., Ntinas, V., Sirakoulis, G. C., & Rubio, A. (2016). A digital memristor emulator for FPGA-based artificial neural networks. In: 2016 1st IEEE international verification and security workshop (IVSW) (pp 1–4). IEEE.

  16. Yu, D., Iu, H. H. C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896.

    Article  Google Scholar 

  17. Prasad, S. S., Kumar, P., & Ranjan, R. K. (2021). Resistorless memristor emulator using CFTA and its experimental verification. IEEE Access, 9, 64065–64075. https://doi.org/10.1109/ACCESS.2021.3075341

    Article  Google Scholar 

  18. Ayten, U. E., Minaei, S., Sağbaş, M. (2017) Memristor emulator circuits using single CBTA, AEU - International Journal of Electronics and Communications, 82, 109–118, https://doi.org/10.1016/j.aeue.2017.08.008.

    Article  Google Scholar 

  19. Yesil, A., & Babacan, Y. (2021). Design of memristor with hard-switching behavior employing only one CCCII and one capacitor. Journal of Circuits, Systems and Computers, 30(09), 2150151.

    Article  Google Scholar 

  20. Ranjan, R. K., Raj, N., Bhuwal, N., & Khateb, F. (2017). Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU—International Journal of Electronics and Communications, 82, 177–190. https://doi.org/10.1016/j.aeue.2017.07.039

    Article  Google Scholar 

  21. Yeşil, A., Babacan, Y., & Kaçar, F. (2019). Design and experimental evolution of memristor with only one VDTA and one capacitor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6), 1123–1132. https://doi.org/10.1109/TCAD.2018.2834399

    Article  Google Scholar 

  22. Babacan, Y., Yesil, A., & Gul, F. (2018). The fabrication and MOSFET-only circuit implementation of semiconductor memristor. IEEE Transactions on Electron Devices, 65(4), 1625–1632. https://doi.org/10.1109/TED.2018.2808530

    Article  ADS  CAS  Google Scholar 

  23. Babacan, Y., & Kaçar, F. (2017). Floating memristor emulator with subthreshold region. Analog Integrated Circuits and Signal Processing, 90, 471–475. https://doi.org/10.1007/s10470-016-0888-9

    Article  Google Scholar 

  24. Vista, J., & Ranjan, A. (2021). Flux controlled floating memristor employing VDTA: incremental or decremental operation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 40(2), 364–372. https://doi.org/10.1109/TCAD.2020.2999919

    Article  Google Scholar 

  25. Sánchez-López, C., Mendoza-Lopez, J., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313.

    Google Scholar 

  26. Sözen, H., & Çam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89(3), 655–663. https://doi.org/10.1007/s10470-016-0785-2

    Article  Google Scholar 

  27. Abdullah, Y., Babacan, Y., & Kaçar, F. (2020). An electronically controllable, fully floating memristor based on active elements: DO-OTA and DVCC. Aeu-International Journal of Electronics and Communications, 123, 153315.

    Google Scholar 

  28. Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431. https://doi.org/10.1109/TCSI.2012.2188957

    Article  MathSciNet  Google Scholar 

  29. Abdullah, Y., Babacan, Y., & Kaçar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287. https://doi.org/10.1016/j.mejo.2014.01.011

    Article  Google Scholar 

  30. Zhao, Q., Wang, C., & Zhang, X. (2019). A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos, 29(1), 013141.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  31. Sharma, V. K., Ansari, M. S., & Parveen, T. (2020). Tunable memristor emulator using off the-shelf components. Procedia Computer Science, 171, 1064–1073. https://doi.org/10.1016/j.procs.2020.04.114

    Article  Google Scholar 

  32. Vista, J., & Ranjan, A. (2019). A simple floating MOS-memristor for high-frequency applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(5), 1186–1195. https://doi.org/10.1109/TVLSI.2018.2890591

    Article  Google Scholar 

  33. Elwakil, A. S., Maundy, B. J., & Psychalinos, C. (2017). On the pinched hysteresis behavior in a state-controlled resistor. AEU-International Journal of Electronics and Communications, 74, 171–175.

    Google Scholar 

  34. Allen PE, Holberg DR (2016) CMOS analog circuit design, Oxford University Press, 9780198097389 (2016). https://books.google.co.in/books?id=SWBKnQAACAAJ

  35. Yang, W. (2010). Non-ideal Op-Amp circuit analysis. International Journal of Electrical Engineering & Education, 47(1), 73–85. https://doi.org/10.7227/IJEEE.47.1.7

    Article  ADS  Google Scholar 

  36. Cho, K., Lee, S., & Eshraghian, K. (2015). Memristor-CMOS logic and digital computational components. Microelectronics Journal, 46(3), 214–220. https://doi.org/10.1016/j.mejo.2014.12.006

    Article  Google Scholar 

  37. Ghosh, M., Mondal, P., Borah, S. S., & Kumar, S. (2023). Resistorless memristor emulators: floating and grounded using OTA and VDBA for high-frequency applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(3), 978–986. https://doi.org/10.1109/TCAD.2022.3189837

    Article  Google Scholar 

  38. Abuelma’atti, M. T., & Khalifa, Z. J. (2016). A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integrated Circuits and Signal Processing, 86, 141–147. https://doi.org/10.1007/s10470-015-0660-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

(Each author contributed equally. 1st author (Mr. Suresh B) is a research scholar and 2nd author Dr. Chandra Shankar and 3rd author Dr. Rudraswamy helped him to find the topic, to obtained the mathematical expressions, simulation results, applications of circuits, experimental verifications and finally after verification of above mentioned, all authors prepared the draft of the manuscript.)

Corresponding author

Correspondence to Chandra Shankar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The citation sequence in the table 2 and a value under the section heading ‘Description of proposed memristor emulator’ has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresha, B., Shankar, C. & Rudraswamy, S.B. A floating memristor emulator for analog and digital applications with experimental results. Analog Integr Circ Sig Process 118, 77–90 (2024). https://doi.org/10.1007/s10470-023-02221-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02221-4

Keywords

Navigation