Skip to main content
Log in

A new digital background calibration technique for pipeline analog to digital converters using decision points of the voltage transfer characteristics

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new technique is introduced for digital background calibration in pipeline analog to digital converters (ADCs). The technique is based on the decision points of the voltage transfer characteristic (VTC) of the pipeline stages, which means the residual VTC is used to estimate the output code of the decision points. By applying the proposed technique, the capacitor mismatch error, the residual amplifier error, and the nonlinearity errors are corrected. To attain proper decision points, the sub-ADC is considered and one of its threshold levels is changed. The mathematical relations of the errors are extracted, and then by applying error coefficients to the final digital outputs, the pipeline ACD is calibrated. This method has a simple digital logic and does not require a particular analog circuit. The proposed technique is applied to the first five stages of a 12-bit 100 MS/s pipeline ADC, and about 0.7 × 106 samples are used. The results show that the presented technique improves the signal-to-noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) from 34.1 and 35.1 dB to 69.2 and 77.6 dB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Devarajan, S., et al. (2017). A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology. IEEE Journal of Solid-State Circuits, 52(12), 3204–3218. https://doi.org/10.1109/JSSC.2017.2747758

    Article  Google Scholar 

  2. Wu, M. S., & Hong, H. C. (2018). A digital background calibration scheme for pipelined ADCs using multiple-correlation estimation. IEEE International Symposium on Circuits and Systems (ISCAS). https://doi.org/10.1109/ISCAS.2018.8351746

    Article  Google Scholar 

  3. Sahoo, B. D., & Razavi, B. (2013). A 10-b 1-GHz 33-mW CMOS ADC. IEEE Journal of Solid-State Circuits, 48(6), 1442–1452. https://doi.org/10.1109/JSSC.2013.2252518

    Article  Google Scholar 

  4. Martens, E., Markulic, N., Benites, J. L., & Craninckx, J. (2023). Calibration techniques for optimizing performance of high-speed ADCs. IEEE Custom Integrated Circuits Conference (CICC). https://doi.org/10.1109/CICC57935.2023.10121250

    Article  Google Scholar 

  5. Datta, B., & Razavi, B. (2009). A 12-bit 200-MHz CMOS ADC. IEEE Journal of Solid-State Circuits, 44(9), 2366–2380. https://doi.org/10.1109/JSSC.2009.2024809

    Article  Google Scholar 

  6. Ramamurthy, C. Parikh, C. D. & Sen, S. (2021). Deterministic digital calibration of 1.5 bits/stage pipelined ADCs by direct extraction of calibration coefficients. In 34th International Conference on VLSI Design and 20th International Conference on Embedded Systems (VLSID), Guwahati, India, https://doi.org/10.1109/VLSID51830.2021.00010

  7. Yahyaee, S. & Yavari, M. (2022). A histogram-based digital background calibration technique for pipelined A/D converters. In Iranian International Conference on Microelectronics (IICM), Tehran, Iran, https://doi.org/10.1109/IICM57986.2022.10152348

  8. Gholami, P., & Yavari, M. (2018). Digital background calibration with histogram of decision points in pipelined ADCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1), 16–20. https://doi.org/10.1109/TCSII.2017.2660765

    Article  Google Scholar 

  9. Mafi, H., Mohammadi, R., & Shamsi, H. (2016). A statistics based digital background calibration technique for pipelined ADCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 51, 149–157. https://doi.org/10.1016/j.vlsi.2015.07.014

    Article  Google Scholar 

  10. Mafi, H., Yargholi, M., & Yavari, M. (2018). Statistics-based digital background calibration of residue amplifier nonlinearity in pipelined ADCs. IEEE Transactions on Circuits and Systems, 65(12), 4097–4109. https://doi.org/10.1109/TCSI.2018.2846647

    Article  Google Scholar 

  11. Wei, J., Zhang, C., & Liu, M. (2022). A 11-Bit 1-GS/s 14.9mW hybrid voltage-time pipelined ADC with gain error calibration. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 799–803. https://doi.org/10.1109/TCSII.2021.3116591

    Article  Google Scholar 

  12. Panagida, A., & Galton, I. (2009). A 130 mW 100MS/s pipelined ADC with 69 dB SNDR enabled by digital harmonic distortion correction. IEEE Journal of Solid-State Circuits, 44(12), 3314–3328. https://doi.org/10.1109/JSSC.2009.2032637

    Article  Google Scholar 

  13. McNeill, J. A., Coln, M. C., Brown, D. R., & Larivee, B. J. (2009). Digital background-calibration algorithm for ‘“Split ADC”’ architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(2), 294–306. https://doi.org/10.1109/TCSI.2008.2001830

    Article  MathSciNet  Google Scholar 

  14. Montazerolghaem, M. A., Moosazadeh, T., & Yavari, M. (2015). A predetermined LMS digital background calibration technique for pipelined ADCs. IEEE Transactions on Circuits and Systems II, Express Briefs, 62(9), 841–845. https://doi.org/10.1109/TCSII.2015.2435071

    Article  Google Scholar 

  15. Zia, E., Farshidi, E., & Kosarian, A. (2019). A split-based digital background calibration of pipelined analog-to-digital converters by cubic spline interpolation filtering. Circuits, Systems and Signal Processing, 38(10), 4799–4816. https://doi.org/10.1007/s00034-019-01090-5

    Article  Google Scholar 

  16. Shi, L., Zhao, W., Wu, J., & Chen, C. (2012). Digital background calibration techniques for pipelined ADC based on comparator dithering. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(4), 239–243. https://doi.org/10.1109/TCSII.2012.2188461

    Article  Google Scholar 

  17. Li, J., & Moon, U. K. (2003). Background calibration techniques for multistage pipelined ADC with digital redundancy. IEEE Transactions on Circuits and Systems II: Analog Digital Signal Process, 50(9), 531–538. https://doi.org/10.1109/TCSII.2003.816921

    Article  Google Scholar 

  18. Wang, X., Hurst, P. J., & Lewis, S. H. (2004). A 12-Bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration. IEEE Journal of Solid-State Circuits, 39(11), 1799–1808. https://doi.org/10.1109/JSSC.2004.835826

    Article  Google Scholar 

  19. Brooks, L., & Lee, H. S. (2008). Background calibration of pipelined ADCs via decision boundary gap estimation. IEEE Transactions on Cicuits and Systems I: Regular Papers, 55(10), 2969–2979. https://doi.org/10.1109/TCSI.2008.925373

    Article  MathSciNet  Google Scholar 

  20. Rakuljic, N., & Galton, I. (2013). Suppression of quantization-induced convergence error in pipelined ADCs with harmonic distortion correction. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(3), 593–602. https://doi.org/10.1109/TCSI.2012.2215754

    Article  MathSciNet  Google Scholar 

  21. Ahmed, I., & Johns, D. A. (2008). An 11-Bit 45 MS/s pipelined ADC with rapid calibration of DAC errors in a multi-bit pipeline stage. IEEE Journal of Solid-State Circuits, 43(7), 1626–1637. https://doi.org/10.1109/JSSC.2008.923724

    Article  Google Scholar 

  22. Karanicolas, A. N., Lee, H. S., & Bacrania, K. L. (1993). A 15-b 1-Msample/s digitally self-calibrated pipelined ADC. IEEE Journal of Solid-State Circuits, 28(12), 1207–1215. https://doi.org/10.1109/4.261994

    Article  Google Scholar 

  23. Chuang, S. Y., & Sculley, T. L. (2002). A digitally self-calibrating 14-bit 10-MHz CMOS pipelined ADC. IEEE Journal of Solid-State Circuits, 37(6), 674–683. https://doi.org/10.1109/JSSC.2002.1004571

    Article  Google Scholar 

  24. Lee, H. S. (1994). A 12-b 600 ks/s digitally self-calibrated pipelined algorithmic ADC. IEEE Journal of Solid-State Circuits, 29(4), 509–515. https://doi.org/10.1109/4.280701

    Article  Google Scholar 

  25. Chatterjee, S., & Roy, S. (2021). A square wave-based digital foreground calibration algorithm of a pipeline ADC using approximate harmonic sampling. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(4), 1068–1072. https://doi.org/10.1109/TCSII.2020.3037812

    Article  Google Scholar 

  26. Chiang, S.-H.W., Sun, H., & Razavi, B. (2014). A 10-Bit 800-MHz 19-mW CMOS ADC. IEEE Journal of Solid-State Circuits, 49(4), 935–949. https://doi.org/10.1109/JSSC.2014.2300199

    Article  Google Scholar 

  27. Ravi, C., Rahul, T. & Sahoo, B., (2014). Histogram based deterministic digital background calibration for pipelined ADCs. In 27th International Conference on VLSI Design and 13th International Conference on Embedded Systems, 569–574, Mumbai, India, https://doi.org/10.1109/VLSID.2014.105

  28. Moosazadeh, T., & Yavari, M. (2015). A calibration technique for pipelined ADCs using self-measurement and histogram-test methods. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(9), 826–830. https://doi.org/10.1109/TCSII.2015.2435851

    Article  Google Scholar 

  29. Wu, T., Wang, N., Wang, J., Xie, L., & Jin, X. (2019). A digital background calibration algorithm of pipelined ADC based on PesudoRandom sequence. In IEEE 2nd International Conference on Electronics Technology (ICET), Chengdu, China, https://doi.org/10.1109/ELTECH.2019.8839343

  30. Wu, K. C., Wu, M. S., & Hong, H. C. (2019). Multiple correlation estimation based digital background calibration scheme for pipelined ADCs. In IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, https://doi.org/10.1109/ISCAS.2019.8702490

  31. Sun, J., Zhang, M., Qiu, L., Wu, J., & Liu, W. (2020). Background calibration of bit weights in pipelined-SAR ADCs using paired comparators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(4), 1074–1078. https://doi.org/10.1109/TVLSI.2019.2961149

    Article  Google Scholar 

  32. Yang, Z., Yang, P., Yin, X., Li, X., & Yang, H. (2021). Reducing signal swing overheads to only 8% in background 3rd-order inter-stage gain error calibration for pipeline ADCs. In IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea. https://doi.org/10.1109/ISCAS51556.2021.9401703

  33. Jiani, M., & Shoaei, O. (2022). Fast background calibration of linear and non-linear errors in pipeline analog-to-digital converters. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 884–888. https://doi.org/10.1109/TCSII.2021.3135424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KG carried out the modeling and simulations studies, and participated in the drafted of the manuscript. EF participated as supervisor of the study and performed the analysis checking. NAS participated as the advisor of the study and performed the analysis checking.

Corresponding author

Correspondence to Kourosh Ghanbari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, K., Farshidi, E. & Alaei Sheini, N. A new digital background calibration technique for pipeline analog to digital converters using decision points of the voltage transfer characteristics. Analog Integr Circ Sig Process 118, 25–35 (2024). https://doi.org/10.1007/s10470-023-02196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02196-2

Keywords

Navigation