Skip to main content
Log in

Design analysis of advanced power amplifiers for 5G wireless applications: a survey

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A power amplifier (PA) is the most essential and crucial block for effective wireless communication in radio frequency (RF) frontend. PAs are employed to amplify the input signal to the appropriate output power level while consuming less DC power and producing high efficiency. Furthermore, current PA designs in nano or micro scales complementary metal oxide semiconductor (CMOS) technology have inherent limitations, including the hot electron effect and oxide breakdown. According to the literature, the performance of the PA directly influences the efficiency of any transmitter. The main purpose of the article is to provide a comprehensive overview, analysis, and quantitative comparison of the most promising RF PA architectures that have previously reported. The key focus of reviewed articles is PAs that were implemented using scalable CMOS technology with adequate output power for portable wireless devices at 2.4 GHz industrial, scientific, and medical band and 5G frequency ranges. The presented comparative study may help future work on wireless RF devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Some or all data, or models that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bhuiyan, M., Reaz, M., Jalil, J., Rahman, L., & Chang, T. (2014). Design trends in fully integrated 2.4 GHz CMOS SPDT switches. Current Nanoscience, 10, 334–343.

    Article  ADS  CAS  Google Scholar 

  2. Ali, S. N., Agarwal, P., Gopal, S., Mirabbasi, S., & Heo, D. (2019). A 25–35 GHz neutralized continuous class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 15 Gb/s and 464% peak PAE. IEEE Transactions on Circuits and Systems I: Regular Papers, 66, 834–847.

    Article  Google Scholar 

  3. Badal, T. I., Reaz, M. B. I., Bhuiyan, M. A. S., & Kamal, N. (2019). CMOS transmitters for 2.4-GHz RF devices: Design architectures of the 2.4-GHz CMOS transmitter for RF devices. IEEE Microwave Magazine, 20, 38–61.

    Article  Google Scholar 

  4. Bhuiyan, M. A. S., Chew, J. X., Reaz, M. B. I., & Kamal, N. (2015). Design of an active inductor based LNA in Silterra 130nm CMOS process technology. Informacije Midem, 45, 188–194.

    Google Scholar 

  5. Bhuiyan, M. A., Zijie, Y., Yu, J. S., Reaz, M. B., Kamal, N., & Chang, T. G. (2016). Active inductor based fully integrated CMOS transmit/receive switch for 2.4 GHz RF transceiver. Anais da Academia Brasileira de Ciências, 88, 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  6. Badal, M. T. I., Reaz, M. B. I., Jalil, Z., & Bhuiyan, M. A. S. (2016). Low power high-efficiency shift register using implicit pulse-triggered flip-flop in 130 nm CMOS process for a cryptographic RFID Tag. Electronics, 5, 92.

    Article  Google Scholar 

  7. Schmiedeke, P., Bhuiyan, M. A. S., Reaz, M. B. I., Chang, T. G., Crespo, M. L., & Cicuttin, A. (2018). A fully integrated high IP1dB CMOS SPDT switch using stacked transistors for 2.4 GHz TDD transceiver applications. Sadhana, 43, 94.

    Article  Google Scholar 

  8. Zahid, M. N., Jiang, J., Lu, H., & Zhang, H. (2021). A modified design of class-E power amplifier with balanced FETs and high output power for RFID applications. Proceedings of Engineering and Technology Innovation, 19, 28–37.

    Article  Google Scholar 

  9. Song, B.-S. (1986). CMOS RF circuits for data communications applications. IEEE Journal of Solid-State Circuits, 21(2), 310–317.

    Article  ADS  Google Scholar 

  10. Caverly, R. H., Smith, S., Hu, J., & Nichols, R. (1998). CMOS RF circuits for integrated wireless systems. In IEEE MTT-S Digest (p. 1851).

  11. Huang, Q., Piazza, F., Orsatti, P., & Ohguro, T. (1998). The impact of scaling down to deep submicron on CMOS RF circuits. IEEE Journal of Solid-State Circuits, 33(7), 1023–1036.

    Article  ADS  Google Scholar 

  12. Camilleri, N., Lovelace, D., Costa, J., & Ngo, D. (1994). New development trends for silicon RF device technologies. In IEEE microwave and millimeter-wave monolithic circuits symposium (pp. 5–8).

  13. Gray, P. R., & Mayer, R. G. (1995). Future directions in silicon ICs for RF personal communications. In Proceedings of custom integrated circuits conference (pp. 83–90).

  14. Steyaert, M., Borremans, M., Craninckx, J., Crols, J., Janssens, J., & Kinget, P. (1996). RF integrated circuit in standard CMOS technologies. In Proceedings of ESSCIRC (pp. 11–18).

  15. Hammainen, H., & Sarfaraz, A. (2017). 5G transformation. How mobile network operators are preparing for transformation to 5G. In Proceedings of the 2017 Internet of Things business models, users, and networks, Copenhagen, Denmark, 23–24 November 2017.

  16. The European Conference of Postal and Telecommunications Administrations CEPT. Spectrum for wireless broadband—5G. https://cept.org/ecc/topics/spectrum-for-wireless-broadband-5g

  17. Federal Communications Commission. Leading the world toward a 5G future. https://www.fcc.gov/5G

  18. Barabi, A., Ross, N., Wolfman, A., Shaham, O., & Socher, E. (2018). A +27 dBm Psat 27 dB gain W-band power amplifier in 0.1 um GaAs. In IEEE MTT-S international microwave symposium digest (pp. 1345–1347).

  19. Nguyen, D. P., Pham, T., & Pham, A.-V. (2018). A 28-GHz symmetrical Doherty power amplifier using stacked-FET cells. IEEE Transactions on Microwave Theory and Techniques, 66(6), 2628–2637.

    Article  ADS  Google Scholar 

  20. Thome, F., Leuther, A., Schlechtweg, M., & Ambacher, O. (2018). Broadband high-power W-band amplifier MMICs based on stacked-HEMT unit cells. IEEE Transactions on Microwave Theory and Techniques, 66(3), 1312–1318.

    Article  ADS  Google Scholar 

  21. Camargo, E., Schellenberg, J., Bui, L., & Estella, N. (2018). F-band, GaN power amplifiers. In IEEE MTT-S international microwave symposium digest (pp. 753–756).

  22. Cwiklíski, M., Friesicke, C., Brückner, P., Schwantuschke, D., Wagner, S., Lozar, R., Maÿler, H., Quay, R., & Ambacher, O. (2018). FullW-band GaN power amplifier MMICs using a novel type of broadband radial stub. IEEE Transactions on Microwave Theory and Techniques, 66(12), 5664–5675.

    Article  ADS  Google Scholar 

  23. Gupta, R. (1999). Fully monolithic CMOS RF power amplifiers: Recent advances. IEEE Communications Magazine, 37, 94–98.

    Article  Google Scholar 

  24. Rofougaran, M., Rofougaran, A., Olgaad, C., & Abidi, A. A. (1994). A 900 MHz CMOS RF power amplifier with programmable output. In IEEE symposium on VLSI circuits, digest of technical papers (pp. 133–134).

  25. Rofougaran, M. (1995). A 900MHz RF power amplifier in 1μm CMOS for a spread-spectrum communication transceiver. M.S. Thesis UCLA.

  26. Su, D., & Mcfarland, W. (1997). A 2.5-V, 1-W monolithic CMOS RF power amplifier. In Proceedings of the custom integrated circuits conference (pp. 189–192).

  27. Yoo, C., & Huang, Q. (2001). A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-μm CMOS. IEEE Journal of Solid-State Circuits, 36(5), 823–830.

    Article  ADS  Google Scholar 

  28. Gupta, R., Ballweber, B. M., & Allstot, D. J. (2001). Design and optimization of CMOS RF power amplifiers. IEEE Journal of Solid-State Circuits, 36(2), 166–175.

    Article  ADS  Google Scholar 

  29. Mertens, K. L. R., & Steyaert, M. S. J. (2002). A 700-MHz 1-W fully differential CMOS class-E power amplifier. IEEE Journal of Solid-State Circuits, 37(2), 137–141.

    Article  ADS  Google Scholar 

  30. Aoki, I., Kee, S. D., Rutledge, D. B., & Hajimiri, A. (2002). Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE Journal of Solid-State Circuits, 37(3), 371–383.

    Article  ADS  Google Scholar 

  31. Bameri, H., Hakimi, A., & Movahhedi, M. (2011). A linear-high range output power control technique for cascade power amplifiers. Microelectronics Journal, 42, 1025–1031.

    Article  CAS  Google Scholar 

  32. Sowlati, T., & Leenaerts, D. (2003). A 2.4-ghz 018-m cmos self-biased cascode power amplifier. IEEE Journal of Circuits, 38, 1318–1324.

    ADS  Google Scholar 

  33. Cai, W., Huang, L., & Wang, S. (2016). Class D power amplifier for medical application. International Journal of Information Engineering, 4, 9–15.

    CAS  Google Scholar 

  34. Sira, D., Thomsen, P., & Larsen, T. (2011). A cascode modulated class-E power amplifier for wireless communications. Microelectronics Journal, 42, 141–147.

    Article  Google Scholar 

  35. Hong, J., Imanishi, D., Okada, K., & Matsuzawa, A. (2010). A 2.4 GHz fully integrated CMOS power amplifier using capacitive cross-coupling. In Proceedings of the 2010 IEEE international conference on wireless information technology and systems, Honolulu, HI, USA (pp. 1–4).

  36. Murad, S. A., Isa, M. N., Bakar, F. A., & Sapawi, R. (2016). High efficiency 2.4 GHz CMOS two stages class-F power amplifier for wireless transmitters. Advances in Electrical and Electronic Engineering, 9, 63–67.

    Google Scholar 

  37. Ghorbani, A. R., & Ghaznavi-Ghoushchi, M. B. (2018). A low-area, 43.5% PAE, 0.9 W, Class-E differential power amplifier in 2.4 GHz for IoT applications. Integrration VLSI Journal, 61, 178–185.

    Article  Google Scholar 

  38. Elsayed, N., Saleh, H., Mohammad, B., & Sanduleanu, M. (2020). A 28-GHz cascode inverse Class-D power amplifier utilizing pulse injection in 22-nm FDSOI. IEEE Access, 8, 97353–97360.

    Article  Google Scholar 

  39. SichunDu, X. (2016). A low-power CMOS Class-E Chireix RF outphasing power amplifier for WLAN applications. Wireless Personal Communications, 90(3), 1547–1561.

    Article  Google Scholar 

  40. Ren, Z., Zhang, K., Liu, L., Li, C., Chen, X., Liu, D., Liu, Z., & Zou, X. (2015). On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 m CMOS. Journal of Semiconductors, 36, 95002.

    Article  Google Scholar 

  41. Doherty, W. H. (1936). A new high efficiency power amplifier for modulated waves. Proceedings of the IRE, 9, 1163–1182.

    Article  Google Scholar 

  42. Wu, Y.-T., & Boumaiza, S. (2012). A modified Doherty configuration for broadband amplification using symmetrical devices. IEEE Transactions on Microwave Theory and Techniques, 60(10), 3201–3213.

    Article  ADS  Google Scholar 

  43. Giofre, R., Piazzon, L., Colantonio, P., & Giannini, F. (2014). A distributed matching/combining network suitable for Doherty power amplifiers covering more than an octave frequency band. In Proceedings of the IEEE MTT-S international microwave symposium (IMS2014), Tampa, FL, USA (pp. 1–3).

  44. Watanab, S., Takayama, Y., Ishikawa, R., & Honjo, K. (2012). A broadband Doherty power amplifier without a quarter-wave impedance inverting network. In Proceedings of the Asia pacific microwave conference proceedings, Kaohsiung, Taiwan (pp. 361–363).

  45. Birafane, A., El-Asmar, M., Kouki, A. B., Helaoui, M., & Ghannouchi, F. M. (2010). Analyzing LINC systems. IEEE Microwave Magazine, 11, 59–71.

    Article  Google Scholar 

  46. Piccinni, G., Avitabile, G., Coviello, G., & Talarico, C. (2016). Distributed amplifier design for UWB positioning systems using the gm over id methodology. In Proceedings of the 13th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD), Lisbon, Portugal (pp. 1–4).

  47. Xie, C. (2011). Characterization of broadband Monolithic Gallium Nitride distributed power amplifier using thermal imaging technique. In 2011 IEEE topical conference on power amplifiers for wireless and radio applications (pp. 77–80). https://doi.org/10.1109/PAWR.2011.5725379

  48. Sayginer, M., Yazgi, M., Kuntman, H. H., & Virdee, B. S. (2013). 1–8 GHz high efficiency single-stage travelling wave power amplifier. Analog Integrated Circuits and Signal Processing, 74, 111–119. https://doi.org/10.1007/s10470-012-9863-2

    Article  Google Scholar 

  49. Lv, G., Chen, W., Liu, X., Ghannouchi, F. M., & Feng, Z. (2019). A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application. IEEE Access, 7, 71665–71674. https://doi.org/10.1109/ACCESS.2019.2919603

    Article  Google Scholar 

  50. Lv, G., Chen, W., Chen, X., Ghannouchi, F. M., & Feng, Z. (2019). A compact Ka/Q dual-band GaAs MMIC Doherty power amplifier with simplified offset lines for 5G applications. IEEE Transactions on Microwave Theory and Techniques, 67(7), 3110–3121. https://doi.org/10.1109/TMTT.2019.2908103

    Article  ADS  Google Scholar 

  51. Wang, Z., Hou, D., Zhou, P., Li, Z., Lu, Y., Chen, J., & Hong, W. (2022). A 37-GHz asymmetric doherty power amplifier with 28-dBm Psat and 32% back-off PAE in 0.1-µm GaAs process. IEEE Transactions on Microwave Theory and Techniques, 70(2), 1391–1400. https://doi.org/10.1109/TMTT.2021.3136510

    Article  ADS  Google Scholar 

  52. Park, B., Kim, D., Kim, S., Cho, Y., Kim, J., Kang, D., Jin, S., Moon, K., & Kim, B. (2016). High-performance CMOS power amplifier with improved envelope tracking supply modulator. IEEE Transactions on Microwave Theory and Techniques, 64(3), 798–809. https://doi.org/10.1109/TMTT.2016.2518659

    Article  Google Scholar 

  53. Lin, Y.-C., & Chen, Y.-J.E. (2021). A CMOS envelope tracking supply converter for RF power amplifiers of 5G NR mobile terminals. IEEE Transactions on Power Electronics, 36(6), 6814–6823. https://doi.org/10.1109/TPEL.2020.3039786

    Article  ADS  Google Scholar 

  54. Wang, W., Chen, S., Cai, J., Zhao, P., Xu, K., & Wang, G. (2019). A dual-band outphasing power amplifier. In 2019 IEEE MTT-S International wireless symposium (IWS) (pp. 1–3). https://doi.org/10.1109/IEEE-IWS.2019.8803923

  55. Ghahremani, A., Annema, A.-J., & Nauta, B. (2017). A 20dBm outphasing class E PA with high efficiency at power back-off in 65nm CMOS technology. In 2017 IEEE radio frequency integrated circuits symposium (RFIC) (pp. 340–343). https://doi.org/10.1109/RFIC.2017.7969087

  56. Huang, T.-Y., Lin, Y.-H., Cheng, J.-H., Kao, J.-C., Huang, T.-W., & Wang, H. (2015). A high-gain low-noise distributed amplifier with low DC power in 0.18-µm CMOS for vital sign detection radar. In 2015 IEEE MTT-S international microwave symposium (pp. 1–3). https://doi.org/10.1109/MWSYM.2015.7166846

  57. Piccinni, G., Avitabile, G., Coviello, G., & Talarico, C. (2016). Distributed amplifier design for UWB positioning systems using the gm over id methodology. In 2016 13th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD) (pp. 1–4). https://doi.org/10.1109/SMACD.2016.7520739

  58. Hsiao, C.-Y., Su, T.-Y., & Hsu, S. S. H. (2013). CMOS Distributed amplifiers using gate-drain transformer feedback technique. IEEE Transactions on Microwave Theory and Techniques, 61(8), 2901–2910. https://doi.org/10.1109/TMTT.2013.2271614

    Article  ADS  Google Scholar 

  59. Tarar, M., Wei, M.-D., Reckmann, M., & Negra, R. (2015). Enhanced gain bandwidth and loss compensated cascaded single-stage CMOS distributed amplifier. German Microwave Conference, 2015, 335–338. https://doi.org/10.1109/GEMIC.2015.7107822

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Gaofeng Zhu acknowledges support form the project “Research on Anti-interference Detection of Residual Oxygen in Glass Medicine Bottles Based on Wavelength Modulation Spectroscopy” Grant No. 2021 JJ30380.

Author information

Authors and Affiliations

Authors

Contributions

Zahid M.N. collected, analyzed the data and write up of manuscript, Zhu G.F. supervised during the whole work, and Javeed F. assists the author(s) during the whole work and improved the language.

Corresponding author

Correspondence to Gaofeng Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M.N., Javeed, F. & Zhu, G. Design analysis of advanced power amplifiers for 5G wireless applications: a survey. Analog Integr Circ Sig Process 118, 199–217 (2024). https://doi.org/10.1007/s10470-023-02193-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02193-5

Keywords

Navigation