Skip to main content
Log in

A robust digital predistorter based on complex hermite polynomial for direct conversion transmitter linearization

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new robust joint digital pre-distorter (DPD) for the linearization of RF power amplifier and compensation of the direct conversion transmitter imbalances based on an Augmented Parallel Hammerstein model (APH). Due to the numerical instability in the conventional polynomial modeling, Complex Hermite polynomial basis functions are proposed and designed to be orthogonal for all real and complex values of the input signal and making the DPD robust to the input signal statistics and numerical instability. The simulation results show the promising performance of the proposed structure and approve its numerical stability in a fixed point calculation environment. It is shown that the ACPR of the transmitted signal is improved by more than 16 dB for the WCDMA and LTE-16 QAM excitation signals. The conditional number of the observation matrix is less than 30 dB, i.e. significantly higher than the performance of the reference models. Various computations have been introduced to analyze and evaluate the proposed pre-distortion structure with LTE-16QAM exciting signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Maurer, L., Stuhlberger, R., Wicpalek, C., Haberpeuntner, G., & Hueber, G. (2008). Be flexible.  IEEE Microwave Magazine. https://doi.org/10.1109/mmm.2008.915364

    Article  Google Scholar 

  2. Abidi, A. A. (1999). CMOS wireless transceivers: The new wave. IEEE Communications Magazine, 37(8), 119–124. https://doi.org/10.1109/35.783135

    Article  Google Scholar 

  3. Gerzaguet, R., Ros, L., Belveze, F., & Brossier, J. M. (2016). Performance of a digital transmitter leakage LMS-based cancellation algorithm for multi-standard radio-frequency transceivers. Digital Signal Processing, 51, 35–46. https://doi.org/10.1016/j.dsp.2016.01.009.

    Article  MathSciNet  Google Scholar 

  4. Pardo-Martín, J. M., & Ortega-González, F. J. (2013). Efficient adaptive compensation of I/Q imbalances using spectral coherence with monobit kernel. Digital Signal Processing, 23(5), 1806–1812. https://doi.org/10.1016/j.dsp.2013.04.003.

    Article  MathSciNet  Google Scholar 

  5. Rawat, K., Rawat, M., & Ghannouchi, F. M. (2010). Compensating I–Q imperfections in hybrid RF/digital predistortion with an adapted lookup table implemented in an FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(5), 389–393. https://doi.org/10.1109/TCSII.2010.2047326.

    Article  Google Scholar 

  6. Morgan, D. R., Ma, Z., Kim, J., Zierdt, M. G., & Pastalan, J. (2006). A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 54(10), 3852–3860. https://doi.org/10.1109/TSP.2006.879264

    Article  MATH  Google Scholar 

  7. Pedro, J. C., & Maas, S. A. (2005). A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1150–1163. https://doi.org/10.1109/TMTT.2005.845723

    Article  Google Scholar 

  8. Manai, M., Chenini, H., Harguem, A., Boulejfen, N., & Ghannouchi, F. M. (2020). Robust digital predistorter for RF power amplifier linearisation. IET Microwaves Antennas & Propagation, 14(7), 649–655.

    Article  Google Scholar 

  9. Becerra-González, J. A., Madero-Ayora, M. J., Reina-Tosina, J., & Crespo-Cadenas, C. (2016). Digital predistortion of power amplifiers using structured compressed-sensing Volterra series. Electronics Letters, 53(2), 89–91.

    Article  Google Scholar 

  10. Cao, H., Soltanitehrani, A., Fager, C., Eriksson, T., & Zirath, H. (2009). I/Q imbalance compensation using a nonlinear modeling approach. IEEE Transactions on Microwave Theory and Techniques, 57(3), 513–518

    Article  Google Scholar 

  11. Schubert, B., Gökceoglu, A., Anttila, L., & Valkama, M. (2013). Augmented Volterra predistortion for the joint mitigation of power amplifier and I/Q modulator impairments in wideband flexible radio, IEEE Global Conference on Signal and Information Processing, 2013, pp. 1162–1165.  https://doi.org/10.1109/GlobalSIP.2013.6737113.

  12. Raich, R., Qian, H., & Zhou, G. T. (2004). Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Transactions on Vehicular Technology, 53(5), 1468–1479.

    Article  Google Scholar 

  13. Raich, R., & Zhou, G. T. (2004). Orthogonal polynomials for complex gaussian processes. IEEE Transactions on Signal Processing, 52(10), 2788–2797. https://doi.org/10.1109/TSP.2004.834400

    Article  MathSciNet  MATH  Google Scholar 

  14. Anttila, L., Handel, P., & Valkama, M. (2010). Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters. IEEE Transactions on Microwave Theory Technology, 58, 730–739. https://doi.org/10.1109/TVT.2004.832415

    Article  Google Scholar 

  15. Van Eijndhoven, S. J. L., & Meyers, J. L. H. (1990). New orthogonality relations for the Hermite polynomials and related Hilbert spaces. Journal of Mathematical Analysis and Applications, 146(1), 89–98. https://doi.org/10.1016/0022-247X(90)90334-C.

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi, S., Jeong, E. R., & Lee, Y. H. (2009). Adaptive predistortion with direct learning based on piecewise linear approximation of amplifier nonlinearity. IEEE Journal of Selected Topics in Signal Processing, 3(3), 397–404.

    Article  Google Scholar 

  17. Aziz, M., Rawat, M., & Ghannouchi, F. M. (2013). Rational function based model for the joint mitigation of I/Q imbalance and PA nonlinearity. IEEE Microwave and Wireless Components Letters, 23(4), 196–198. https://doi.org/10.1109/LMWC.2013.2247751

    Article  Google Scholar 

  18. Aziz, M., Rawat, M., & Ghannouchi, F. M. (2014). Low complexity distributed model for the compensation of direct conversion transmitter’s imperfections. IEEE Transactions on Broadcasting, 60(3), 568–574. https://doi.org/10.1109/TBC.2014.2343071.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abumoslem Jannesari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majdinasab, E., Jannesari, A. A robust digital predistorter based on complex hermite polynomial for direct conversion transmitter linearization. Analog Integr Circ Sig Process 114, 417–429 (2023). https://doi.org/10.1007/s10470-022-02113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02113-z

Keywords

Navigation