Skip to main content
Log in

Voltage-mode PID controller design employing canonical number of active and passive elements

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper originality is put forward a second-generation voltage conveyor (VCII) based voltage-mode PID controller. The proposed circuit includes a single VCII-, two capacitors, two resistors, and no need any passive component matching conditions. The sensitivity has been investigated for the control parameters. Besides, the impacts on operating frequency ranges of the parasitic impedances have been examined. Simulation outcomes have been obtained by operating TSMC 0.18 μm CMOS technology parameters with power supply ± 0.9 V. Additionally, a closed-loop control system application is included to demonstrate the circuit’s functioning. An experimental study is given to confirm the time-domain performance of the proposed circuit by using commercially available integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Erdal, C., Toker, A., & Acar, C. (2001). Ota-C based proportional-integral-derivative (PID) controller and calculating optimum parameter tolerances. Turkish Journal of Electrical Engineering and Computer Sciences, 9(2), 189–198.

    Google Scholar 

  2. Keskin, A. U. (2006). Design of a PID controller circuit employing CDBAs. International Journal of Electrical Engineering Education, 43(1), 48–56. https://doi.org/10.7227/IJEEE.43.1.5

    Article  Google Scholar 

  3. Pandey, N., Kapur, S., Arora, P., & Sharma, S. (2011). MO-CCCCTA based PID controller employing grounded passive elements. 2011 2nd International Conference on Computer and Communication Technology, ICCCT-2011, pp 270–273.

  4. Srisakultiew, S., & Siripruchyanun, M. (2013). A synthesis of electronically controllable current-mode PI, PD and PID controllers employing CCCDBAs. Circuits and Systems, 04(03), 287–292. https://doi.org/10.4236/cs.2013.43039

    Article  Google Scholar 

  5. Ayten, U. E., Yuce, E., & Minaei, S. (2018). A voltage-mode PID controller using a single CFOA and only grounded capacitors. Microelectronics Journal, 81, 84–93. https://doi.org/10.1016/j.mejo.2018.09.010

    Article  Google Scholar 

  6. Safari, L., Yuce, E., Minaei, S., Ferri, G., & Stornelli, V. (2020). A second-generation voltage conveyor (VCII)–based simulated grounded inductor. International Journal of Circuit Theory and Applications, 48(7), 1180–1193. https://doi.org/10.1002/cta.2770

    Article  Google Scholar 

  7. Çam Taşkıran, Z. G., Sedef, H., & Anday, F. (2020). A new PID controller circuit design using CFOAs. Circuits, Systems, and Signal Processing. https://doi.org/10.1007/s00034-020-01540-5

    Article  Google Scholar 

  8. Erdal, C., Kuntman, H. H., & Kalalı, S. (2004). A current controlled conveyor based proportional-integral-derivative (PID) controller. Istanbul University—Journal of Electrical and Electronics Engineering, 4(2), 1243–1248.

    Google Scholar 

  9. Yuce, E., Tokat, S., Kizilkaya, A., & Cicekoglu, O. (2006). CCII-based PID controllers employing grounded passive components. AEU—International Journal of Electronics and Communications, 60(5), 399–403. https://doi.org/10.1016/j.aeue.2005.03.017

    Article  Google Scholar 

  10. Yuce, E., Tokat, S., Minaei, S., & Cicekoglu, O. (2006). Low-component-count insensitive current-mode and voltage-mode PID PI and PD controllers. Frequenz, 60(3–4), 65–69. https://doi.org/10.1109/ISIE.2005.1528911

    Article  Google Scholar 

  11. Gupta, S. S., Bhaskar, D. R., Senani, R., & Singh, A. K. (2009). Inverse active filters employing CFOAs. Electrical Engineering, 91(1), 23–26. https://doi.org/10.1007/s00202-009-0112-3

    Article  Google Scholar 

  12. Yuce, E., & Minaei, S. (2010). New CCII-based versatile structure for realizing PID controller and instrumentation amplifier. Microelectronics Journal, 41(5), 311–316. https://doi.org/10.1016/j.mejo.2010.03.008

    Article  Google Scholar 

  13. Wang, H.-Y., Chang, S.-H., Yang, T.-Y., & Tsai, P.-Y. (2011). A novel multifunction CFOA-based inverse filter. Circuits and Systems, 02(01), 14–17. https://doi.org/10.4236/cs.2011.21003

    Article  Google Scholar 

  14. Gupta, S. S., Bhaskar, D. R., & Senani, R. (2011). New analogue inverse filters realised with current feedback op-amps. International Journal of Electronics, 98(8), 1103–1113. https://doi.org/10.1080/00207217.2010.547812

    Article  Google Scholar 

  15. Sagbas, M., Koksal, M., & Ayten, U. E. (2013). Design of dominantly proportional PID controller using a single commercially available active component. 2013 36th International Conference on Telecommunications and Signal Processing, TSP 2013, pp 427–430.

  16. Silaruam, V., Lorsawatsiri, A., & Wongtaychatham, C. (2013). Novel resistorless mixed-mode PID controller with improved low-frequency performance. Radioengineering, 22(3), 932–940.

    Google Scholar 

  17. Tangsrirat, W. (2015). Voltage-mode analog PID controller using a single- z-copy current follower transconductance amplifier (ZC-CFTA). Informacije MIDEM, 45(3), 175–179.

    Google Scholar 

  18. Patil, V., & Sharma, R. K. (2015). Novel inverse active filters employing CFOAs. International Journal for Scientific Research & Development, 3(7), 359–360.

    Google Scholar 

  19. Pandey, R., Pandey, N., Chitranshi, S., & Paul, S. K. (2015). Operational transresistance amplifier based PID controller. Advances in Electrical and Electronic Engineering, 13(2), 171–181. https://doi.org/10.15598/aeee.v13i2.1164

    Article  Google Scholar 

  20. Yuce, E., & Alpaslan, H. (2016). DDCC+ based voltage-mode PID controller employing only grounded passive components. Indian Journal of Engineering and Materials Sciences, 23(2–3), 120–128.

    Google Scholar 

  21. Singh, A. K., Gupta, A., & Senani, R. (2017). OTRA-based multi-function inverse filter configuration. Advances in Electrical and Electronic Engineering, 15(5), 846–856. https://doi.org/10.15598/aeee.v15i5.2572

    Article  Google Scholar 

  22. Prommee, P., & Angkeaw, K. (2018). High performance electronically tunable log-domain current-mode PID controller. Microelectronics Journal, 72(July), 126–137. https://doi.org/10.1016/j.mejo.2017.09.008

    Article  Google Scholar 

  23. Özer, E. (2021). Design of Voltage-Mode PID Controller Based on Current Follower Transconductance Amplifiers. In Global Conference on Engineering Research (GLOBCER’21) (pp. 165–178).

  24. Özer, E., & Kaçar, F. (2021). Design of voltage-mode PID controller using a single voltage differencing current conveyor (VDCC). Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-021-01880-5

    Article  Google Scholar 

Download references

Funding

The author(s) received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Özer.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, E., Sayın, A. & Kaçar, F. Voltage-mode PID controller design employing canonical number of active and passive elements. Analog Integr Circ Sig Process 113, 361–371 (2022). https://doi.org/10.1007/s10470-022-02057-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02057-4

Keywords

Navigation