Skip to main content
Log in

CCII-based simulated floating inductor and floating capacitance multiplier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, a new lossless simulated floating inductor (SFI) and a new lossless floating capacitance multiplier (FCM) are proposed. Both circuits include three second-generation current conveyors. The proposed SFI and FCM circuits include a grounded capacitor. The proposed SFI employs only grounded passive elements, while the FCM with a minimum number of passive components does not require any passive component-matching problems. However, the proposed SFI needs a single passive element-matching condition, and the FCM uses a floating resistor. As an application example, a second-order band-pass filter is given for these circuits. Both structures are simulated through the SPICE program. Some experimental results for the proposed SFI are included. Further, a second-order high-pass filter example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kuntman, H. H., & Uygur, A. (2012). New possibilities and trends in circuit design for analog signal processing, In International Conference on Applied Electronics, pp. 1–9.

  2. Yuce, E., (2017). ‘DO-CCII/DO-DVCC based electronically fine tunable quadrature oscillators’, Journal of Circuits, Systems, and Computers, 26(02), 1750025, 17.

  3. Tripathi, N., Saxena, N., & Soni, S. (2013). Design of an amplifier through second generation current conveyor. International Journal of Engineering Trends and Technology, 4(5), 1325–1330.

    Google Scholar 

  4. Ferri, G., & Guerrini, N. C., (2001). ‘Low-voltage low-power novel CCII topologies and applications’, In IEEE International Conference on Electronics, Circuits and Systems, pp. 1095–1098.

  5. Wilson, B. (1992). Tutorial review Trends in current conveyor and current-mode amplifier design. International Journal of Electronics, 73(3), 573–583.

    Article  Google Scholar 

  6. Khan, I. A., & Zaidi, M. H. (2003). A novel generalized impedance converter using single second generation current conveyor. Active and Passive Electronic Components, 26(2), 91–94.

    Article  Google Scholar 

  7. Sedra, A., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Article  Google Scholar 

  8. Kumar, U. (1981). Current Conveyors: A review of the state of the art. IEEE Circuits and Systems Magazine, 3(1), 10–14.

    Article  Google Scholar 

  9. Frias, D. M., (2008). ‘Design and applications of CMOS current conveyors’, Master Thesis, National Institute of Astrophysics, Optics and Electronics, Puebla.

  10. Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. Kluwer Academic Publishers.

    Google Scholar 

  11. Alpaslan, H., Yuce, E., & Tokat, S. (2013). A new lossless floating inductor simulator employing only two-terminal active devices. Indian Journal of Engineering and Materials Sciences, 20(1), 35–41.

    Google Scholar 

  12. De Marcellis, A., Ferri, G., Guerrini, N. C., Scotti, G., Stornelli, V., & Trifiletti, A. (2009). A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectronics Journal, 40(1), 20–25.

    Article  Google Scholar 

  13. Fakhfakh, M., Loulou, M., & Tlelo-Cuautle, E., (2007). ‘Synthesis of CCIIs and design of simulated CCII based floating inductances’, In 14th IEEE International Conference on Electronics, Circuits and Systems, pp. 379–382.

  14. Ferri, G., Guerrini, N. C., & Diqual, M. (2003). CCII-based floating inductance simulator with compensated series resistance. Electronics Letters, 39(22), 1560–1562.

    Article  Google Scholar 

  15. Higashimura, M., & Fukui, Y. (1989). Brief communication Simulation of lossless floating inductance using two current conveyors and an operational transconductance amplifier. International Journal of Electronics, 66(4), 633–638.

    Article  Google Scholar 

  16. Kiranon, W., & Pawarangkoon, P. (1997). Floating inductance simulation based on current conveyors. Electronics Letters, 33(21), 1748–1749.

    Article  Google Scholar 

  17. Layos, M. C., & Haritantis, I. (1997). On the derivation of current-mode floating inductors. International Journal of Circuit Theory and Applications, 25(1), 29–36.

    Article  Google Scholar 

  18. Metin, B., & Cicekoglu, O. (2006). A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(6), 483–486.

    Article  Google Scholar 

  19. Minaei, S., & Yuce, E. (2008). Realization of tunable active floating inductance simulators. International Journal of Electronics, 95(1), 27–37.

    Article  Google Scholar 

  20. Minaei, S., Cicekoglu, O., Kuntman, H., & Turkoz, S. (2002). Electronically tunable, active only floating inductance simulation. International Journal of Electronics, 89(12), 905–912.

    Article  Google Scholar 

  21. Minaei, S., Yuce, E., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.

    Article  Google Scholar 

  22. Minaei, S., & Yuce, E. (2008). A tunable circuit for realizing arbitrary floating impedances. Journal of Circuits, Systems, and Computers, 17(03), 513–524.

    Article  Google Scholar 

  23. Mohan, P. V. A. (1998). Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electronics Letters, 34(11), 1037–1038.

    Article  Google Scholar 

  24. Pal, K. (1981). New inductance and capacitor floatation schemes using current conveyors. Electronics Letters, 17(21), 807–808.

    Article  Google Scholar 

  25. Pal, K. (2004). Floating inductance and FDNR using positive polarity current conveyors. Active and Passive Electronic Components, 27(2), 81–83.

    Article  Google Scholar 

  26. Pal, K. (1981). Novel floating inductance using current conveyors. Electronics Letters, 17(18), 638.

    Article  Google Scholar 

  27. Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2009). Floating immittance function simulator and its applications. Circuits, Systems, and Signal Processing, 28(1), 55–63.

    Article  MATH  Google Scholar 

  28. Sagbas, M., Ayten, U. E., Sedef, H., & Koksal, M. (2009). Electronically tunable floating inductance simulator. International Journal of Electronics and Communications (AEU), 63(5), 423–427.

    Article  MATH  Google Scholar 

  29. Senani, R. (1980). New tunable synthetic floating inductors. Electronics Letters, 16(10), 382–383.

    Article  Google Scholar 

  30. Senani, R. (1980). Novel active RC realisations of tunable floating inductors. Electronics Letters, 16(4), 154–155.

    Article  Google Scholar 

  31. Senani, R. (1988). Floating immittance realisation: Nullor approach. Electronics Letters, 24(7), 403–405.

    Article  Google Scholar 

  32. Senani, R. (1986). On the realization of floating active elements. IEEE Transactions on Circuits and Systems, 33(3), 323–324.

    Article  Google Scholar 

  33. Senani, R. (1978). Active simulation of inductors using current conveyor. Electronics Letters, 15(14), 483–484.

    Article  Google Scholar 

  34. Senani, R. (1982). Novel lossless synthetic floating inductor employing a grounded capacitor. Electronics Letters, 18(10), 413–414.

    Article  Google Scholar 

  35. Senani, R. (1979). Novel active RC circuit for floating-inductor simulation. Electronics Letters, 15(21), 679–680.

    Article  Google Scholar 

  36. Singh, V. (1979). A new active-RC circuit realization of floating inductance. Proceedings of the IEEE, 67(12), 1659–1660.

    Article  Google Scholar 

  37. Yuce, E. (2006). Floating inductance, FDNR and capacitance simulation circuit employing only grounded passive elements. International Journal of Electronics, 93(10), 679–688.

    Article  Google Scholar 

  38. Yuce, E. (2006). On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 49(2), 161–166.

    Article  Google Scholar 

  39. Yuce, E., Cicekoglu, O., & Minaei, S. (2006). Novel floating inductance and FDNR simulators employing CCII+s. Journal of Circuits, Systems, and Computers, 15(01), 75–81.

    Article  Google Scholar 

  40. Yuce, E., Cicekoglu, O., & Minaei, S. (2006). CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integrated Circuits and Signal Processing, 46(3), 287–291.

    Article  Google Scholar 

  41. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electrical Engineering, 88(6), 519–525.

    Article  Google Scholar 

  42. Al-Absi, M. A., & Al-Khulaifi, A. A. (2019). A new floating and tunable capacitance multiplier with large multiplication factor. IEEE Access, 7, 120076–120081.

    Article  Google Scholar 

  43. Mohan, P. V. A. (2005). Floating capacitance simulation using current conveyors. Journal of Circuits, Systems, and Computers, 14(01), 123–128.

    Article  Google Scholar 

  44. Jaikla, W., & Siripruchyanun, M. (2007). Realization of current conveyors-based floating simulator employing grounded passive elements, In the 2007 ECTI International Conference, pp. 89–92.

  45. Siripruchyanun, M., Phattanasak, M., Jaikla, W. (2007). Temperature-insensitive, current conveyor-based floating simulator topology, In 2007 International Symposium on Integrated Circuits, pp. 65–68.

  46. Abuelma’atti, M. T., & Tasadduq, N. A. (1999). ‘Electronically tunable capacitance multiplier and frequency-dependent negative-resistance simulator using the current-controlled current conveyor’, Microelectronics Journal, 30(9), 869–873.

  47. Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2), 82–91.

    Article  Google Scholar 

  48. Bhushan, M., & Newcomb, R. W. (1967). Grounding of capacitors in integrated circuits. Electronics Letters, 3(4), 148–149.

    Article  Google Scholar 

  49. Yuce, E., & Minaei, S. (2008). Universal current-mode filters and parasitic impedance effects on the filter performances. International Journal of Circuit Theory and Applications, 36(2), 161–171.

    Article  Google Scholar 

  50. Available web page: https://www.analog.com/media/en/technical-documentation/data-sheets/AD844.pdf. [Accessed: 26-Sep-2021].

  51. Hassanein, W. S., Awad, I. A., & Soliman, A. M. (2005). New high accuracy CMOS current conveyors. International Journal of Electronics and Communications (AEU), 59(7), 384–391.

    Article  Google Scholar 

  52. http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s02/Assignments/t18h_lo_epi-params-mod.txt.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Yuce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yucehan, T., Yuce, E. CCII-based simulated floating inductor and floating capacitance multiplier. Analog Integr Circ Sig Process 112, 417–432 (2022). https://doi.org/10.1007/s10470-022-02056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02056-5

Keywords

Navigation