Skip to main content
Log in

Single-beam graphene reflectarray for terahertz band communication

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A graphene-based reflectarray antenna operating at 1.6 THz is introduced in this paper. This reflectarray has dimensions of \(20 \lambda \times 20 \lambda\) (3.75 mm× 3.75 mm) containing 40 × 40 (1600) cells. The dimensions of each cell are \(\lambda /2 \times \lambda /2\). Three different hexagonal-shaped unit cells are analyzed for the appropriate design. Reflection coefficient phase ranges for the three unit cells are 0°–190°, 0°–225° and 0°–525°, respectively. The unit cell (uc3), which gives the reflection phase of 525°, is chosen to construct the reflectarray antenna. The array cells are placed upon a silicon dioxide (SiO2) substrate. The feed is a horn antenna positioned at the focal point. The focal-length-to-diameter (F/D) ratio is one. The proposed reflectarray antenna is analyzed using the finite integration technique. Different unit cell sizes are used to compensate for the phase of the different path lengths. Maximum gains of 18.7, 19, and 17.7 dB are obtained at 1.5, 1.6, and 1.7 THz, respectively. In terms of the number of elements, the proposed structure has a very good gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article, and the manuscript has no associated data.

References

  1. Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 11, 111101.

    Article  Google Scholar 

  2. Carrasco, E., & Perruisseau-Carrier, J. (2013). Reflectarray antenna at terahertz using graphene. IEEE Antennas and Wireless Propagation Letters, 12, 253–256.

    Article  Google Scholar 

  3. Zainud-Deen, S. H., Mabrouk, A. M., & Malhat, H. A. (2018). Frequency tunable graphene metamaterial reflectarray. Wireless Personal Communication, 103, 1849–1857.

    Article  Google Scholar 

  4. Han, C., & Akyildiz, I. F. (2017). Three-dimensional end-to-end modeling and analysis for graphene enabled terahertz band communications. IEEE Transactions On Vehicular Technology, 66(7), 5626–5634.

    Article  Google Scholar 

  5. ELsharkawy, R., Hindy, M., Sebak, A. R., Saleeb, A., EL-Rabaie, E.L.-S. M., Ragheb, A., Ashraf, M., & Alshebeili, S. (2019). Single- and double-beam reflectarrays for Ka band communication. Sādhanā, 44, 106.

    Article  Google Scholar 

  6. Huang, J., & Encinar, J. A. (2007). Reflectarray antennas. Wiley-IEEE Press.

    Book  Google Scholar 

  7. Nayeri, P., Yang, F., & Elsherbeni, A. Z. (2018). Reflectarray antennas theory, designs, and applications. John Wiley & Sons Ltd.

    Book  Google Scholar 

  8. Sahandabadi, S., Makki, S.V.A.-D., & Alirezaee, Sh. (2020). Design of a reflectarray antenna using graphene and epsilon-near-zero metamaterials in terahertz band. Progress In Electromagnetics Research Letters, 89, 113–119.

    Article  Google Scholar 

  9. Chang, Z., You, B., Wu, L.-S., Tang, M., Zhang, Y.-P., & Mao, J.-F. (2016). A reconfigurable graphene reflectarray for generation of vortex THz waves. IEEE Antennas and Wireless Propagation Letters, 15, 1537–1540.

    Article  Google Scholar 

  10. Carrasco, E., Tamagnone, M., & Perruisseau-Carrier, J. (2013). Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection. Applied Physics Letters, 102(10), 104103.

    Article  Google Scholar 

  11. Biswas, S. R., Gutiérrez, C. E., Nemilentsau, A., Lee, I.-H., Oh, S.-H., Avouris, P., & Low, T. (2018). Tunable graphene metasurface reflectarray for cloaking, illusion, and focusing. Physical Review Applied, 9(3), 034021.

    Article  Google Scholar 

  12. Esquius-Morote, M., Gómez-Díaz, J. S., & Perruisseau-Carrier, J. (2014). Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Transactions on Terahertz Science and Technology, 4(1), 116–122.

    Article  Google Scholar 

  13. Deng, L., Wu, Y., Zhang, C., Hong, W., Peng, B., Zhu, J., & Li, S. (2017). Manipulating of different polarized reflected waves with graphene-based plasmonic metasurfaces in terahertz regime. Scientific Reports, 7, 10558.

    Article  Google Scholar 

  14. https://www.cst.com/products/cstmws.

  15. Hanson, G. W. (2008). Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics., 103, 064302.

    Article  Google Scholar 

  16. Wu, Y., Qu, M., Jiao, L., Liu, Y., & Ghassemlooy, Z. (2016). Graphene-based yagi-uda antenna with reconfigurable radiation patterns. AIP Advances, 6, 065308.

    Article  Google Scholar 

  17. Bala, R., Marwaha, A., & Marwaha, S. (2015). Material modeling approach for graphene antenna design. Indonesian Journal of Electrical Engineering and Computer Science, 6(3), 480–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Elkorany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.A., Elsharkawy, R.R., Saleeb, D.A. et al. Single-beam graphene reflectarray for terahertz band communication. Analog Integr Circ Sig Process 112, 517–525 (2022). https://doi.org/10.1007/s10470-022-02033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02033-y

Keywords

Navigation