Skip to main content
Log in

A systematic approach for the design of linear filters and oscillators employing tree representation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a block based systematic approach for synchronous design of linear filters and oscillators through full design space exploration is presented, which exploits inherent hierarchical property of tree. To bridge the gap between system specification and hardware structure of analog system, transfer function of linear filter and characteristic equation of oscillator have been modeled using a rooted tree, formed based on the characteristics of four basic building blocks. A hardware conversion algorithm has been used to map the paths of the tree into operational transconductance amplifier (OTA) based circuits, implementing both programmable linear filter and oscillator. Twenty seven distinct architectures for filters and oscillators are generated. The proposed approach is also compatible with Field Programmable Analog Array (FPAA), as demonstrated by mapping the generated circuits into a hexagonal FPAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sun, Y., & Fidler, J. K. (1997). Structure generation and design of multiple loop feedback OTA-grounded capacitor filters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(1), 1–11.

    Google Scholar 

  2. Tu, S. H., Chang, C.-M., Ross, J. N., & Swamy, M. N. (2007). Analytical synthesis of current-mode high-order single-ended-input OTA and equal-capacitor elliptic filter structures with the minimum number of components. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(10), 2195–2210.

    Article  Google Scholar 

  3. Koziel, S., Szczepanski, S., & Schaumann, R. (2003). A general approach to continuous-time Gm-C filters. International Journal of Circuit Theory and Applications, 31(4), 361–383.

    Article  Google Scholar 

  4. Wu, J., & El-Masry, E. I. (1998). Design of current-mode ladder filters using coupled-biquads. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(11), 1445–1454.

    Article  Google Scholar 

  5. Abdolmaleki, M., Dousti, M., & Tavakoli, M. B. (2019). Design and simulation of tunable low-pass Gm-C filter with 1 GHz cutoff frequency based on CMOS inventers for high speed telecommunication applications. Analog Integrated Circuits and Signal Processing, 100, 279–286.

    Article  Google Scholar 

  6. Kamat, D. V., Ananda Mohan, P. V., & Prabhu, K. G. (2010). Novel first-order and second-order current-mode filters using multiple-output operational transconductance amplifiers. Circuits Systems and Signal Process, 29, 553–576.

    Article  MathSciNet  Google Scholar 

  7. Prommee, P., & Pattanatadapong, T. (2010). Realization of tunable pole-Q current-mode OTA-C universal filter. Circuits Systems and Signal Process, 29(5), 913–924.

    Article  Google Scholar 

  8. Ray, B. N., Nandi, P. K., & Pal Chaudhuri, P. (2004). Synthesis of programmable multi-input current-mode linear analog circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(8), 1440–1456.

    Article  Google Scholar 

  9. Abuelma’atti, M. T. (2017). Recent developments in current-mode sinusoidal oscillators: circuits and active elements. Arabian Journal for Science and Engineering, 42(7), 2583–2614.

    Article  MathSciNet  Google Scholar 

  10. Odame, K. M., & Hasler, P. (2009). Theory and design of OTA-C oscillators with native amplitude limiting. IEEE Transactions on Circuits and Systems-I? Regular Papers, 56(1), 40–50.

    Article  MathSciNet  Google Scholar 

  11. Martinez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on \(CCII^+\). IEEE Transactions on Circuits System I: Fundamental Theory and Applications, 46(11), 1386–1390.

    Article  Google Scholar 

  12. Tu, S.-H., Hwang, Y.-S., Chen, J.-J., Soliman, A. M., & Chang, C.-M. (2012). OTA-C arbitrary-phase-shift oscillators. IEEE Transactions on Instrumentation and Measurement, 61(8), 2305–2319.

    Article  Google Scholar 

  13. Datta, D., Bhanja, M., Chaudhuri, A., Ray, B. N., Banerjee, A. (2019). Cell-based coherent design methodology for linear and non-linear analog circuits. In Proceeding of 31st IEEE International System on Chip Conference, 3–6 Sept. 2019.

  14. Fakhfakh, M., & Pierzchała, M. (2016). Synthesis of active circuits by combining UGCs. International Journal of Electronics, 103(3), 455–467.

    Article  Google Scholar 

  15. Chang, S.-J., Hou, H.-S., & Su, Y.-K. (2006). Automated passive filter synthesis using a novel tree representation and genetic programming. IEEE Transcations on Evolutionary Computation, 10(1), 93–100.

    Article  Google Scholar 

  16. Danzi, F., Gibert, J. M., Frulla, G., & Cestino, E. (2018). Graph-based element removal method for topology synthesis of beam based ground structures. Structural and Multidisciplinary Optimization, 58(4), 1809–1813.

    Article  Google Scholar 

  17. Pierzchala, M., & Fakhfakh, M. (2018). Synthesis of electronic circuits structures on the basis of active switches. In: Pathological Elements in Analog Circuit Design, Springer.

  18. Ray, B., Chaudhuri, P.P. & Nandi, P.K. (2000). Design of OTA based field programmable analog array [CMOS VLSI]. In VLSI Design 2000. Wireless and Digital Imaging in the Millennium. In proceedings of 13th international conference on VLSI design (pp. 494–498). IEEE.

  19. Doboli, A., Dhanwada, N. & Vemuri, R. (2000). A heuristic technique for system-level architecture generation from signal-flow graph representations of analog systems. In 2000 IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 3, pp. 181–184). IEEE.

  20. PierzchaŁa, M., & Fakhfakh, M. (2011). Transformation of LC-filters to active RC-circuits via the two-graph method. Microelectronics Journal, 42(8), 999–1005.

    Article  Google Scholar 

  21. Bhanja, M., Ray, B. N. (2017). A graph based synthesis procedure for linear analog function. In Proc. 30th IEEE Intl. Conf. System-On-Chip (SOCC), Sept. 5–8 (pp. 328–333).

  22. Sallem, A., Pereira, P., Fakhfakh, M., Fino, H. (2013). A Multi-objective simulation based tool: Application to the design of high performance LC-VCOs. In Doctoral Conference on Computing, Electrical and Industrial Systems (pp. 459–468). Springer.

  23. Garbaya, A., Kotti, M., Fakhfakh, M., & Tlelo-Cuautle, E. (2020). Metamodelling techniques for the optimal design of low-noise amplifiers. Electronics, 9(787), 1–15.

    Google Scholar 

  24. Meissner, M., & Hedrich, L. (2015). FEATS: Framework for explorative analog topology synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(2), 213–226.

    Article  Google Scholar 

  25. Ray, B. N., Pal Chaudhuri, P., & Nandi, P. K. (2002). Efficient synthesis of OTA network for linear analog function. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems., 21(5), 517–533.

    Article  Google Scholar 

  26. Bhanja, M., & Ray, B. N. (2017). Synthesis procedure of configurable building block based linear and nonlinear analog circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems., 36(12), 1940–1953.

    Article  Google Scholar 

  27. Baschirotto, A. (2002). Switched-Capacitor Circuits. In C. Toumazou, G. Moschytz, B. Gilbert, & G. Kathiresan (Eds.), Trade-Offs in Analog Circuit Design. Boston, MA: Springer.

    Google Scholar 

  28. Ranjan, A., Perumalla, S., Kumar, R., & Vista, J. (2017). Third order voltage mode universal filter using CCCII. Analog Integrated Circuits and Signal Processing, 90(3), 539–550.

    Article  Google Scholar 

  29. Koton, J., Herencsar, N., Vrba, K., & Metin, B. (2014). Voltage-mode multifunction filter with mutually independent Q and \(\omega _0\) control feature using VDDDAs. Analog Integrated Circuits and Signal Processing, 81(1), 53–60.

    Article  Google Scholar 

  30. Nikoloudis, S., & Psychalinos, C. (2010). Multiple input single output universal biquad filter with current feedback operational amplifiers. Circuits, Systems and Signal Processing, 29(6), 1167–1180.

    Article  Google Scholar 

  31. Senani, R., Bhaskar, D.R., Singh, A.K., and Singh, V.K. (2013) CFOAs: merits, demerits, basic circuits and available varieties. In Current Feedback Operational Amplifiers and Their Applications (pp. 25-48). Springer.

  32. Palumbo, G., & Pennisi, S. (2001). Current-feedback amplifiers versus voltage operational amplifiers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(5), 617–623.

    Article  Google Scholar 

  33. Wheatley, C. F., & Wittlinger, H. A. (1969).OTA obsoletes op. amp. In P. Nat. Econ. Conf (pp. 152-157).

  34. Sanchez-Sinencio, E., & Silva-Martinez, J. (2000). CMOS transconductance ampliers, architectures and active filters: A tutorial. IEE Proceedings-Circuits, Devices and Systems, 147(1), 3–12.

    Article  Google Scholar 

  35. Lewinski, A., & Silva-Martinez, J. (2004). OTA linearity enhancement technique for high frequency applications with IM3 below-65 dB. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(10), 542–548.

    Article  Google Scholar 

  36. Becker, J., Henrici, F., Trendelenburg, S., Ortmannas, M., & Manoli, Y. (2008). A field-programmable analog array of 55 digitally tunable OTAs in a hexagonal lattice. IEEE Journal of Solid-State Circuits, 43(12), 2759–2768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjana Datta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, D., Bhanja, M., Banerjee, A. et al. A systematic approach for the design of linear filters and oscillators employing tree representation. Analog Integr Circ Sig Process 108, 181–203 (2021). https://doi.org/10.1007/s10470-021-01869-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01869-0

Keywords

Navigation