Skip to main content

Advertisement

Log in

Energy efficient hybrid full adder design for digital signal processing in nanoelectronics

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In recent years, there has been a growing interest in energy efficient VLSI designs for portable devices. Full adder cell is one of the most widely used and important blocks of arithmetic units that are in many digital signal processors. The quest to reach low energy consumption, and high noise immunity in the nanoscale regime, directed this work for discovering a new low-power and noise immune full adder cell. In this paper, a full adder with an innovative hybrid structure of pass-transistor and complementary styles is proposed based on carbon nanotube field effect transistor (CNFET). CNFET as one of the alternative nanodevices is the most feasible option to replace MOSFET technology for production by the early 2020, from industry perspective. The proposed full adder as well as the most relevant state-of-the-art designs are evaluated for different parameters, such as delay, power dissipation, and energy consumption over two different test-bed scenarios. In the first scenario, full adder cells are compared for different operating conditions such as different operating frequency, load capacitors, and supply voltages. In the second scenario, full adder cells are embedded and evaluated in 4-operands carry save adder with the final ripple carry adder in 4 and 8 bit lengths. These evaluations have been carried out using Synopsis HSPICE and the Stanford CNFET model for the 16 nm technology node. The proposed full adder leads to the average energy consumption improvements of 37% and 43% in 4-bit and 8-bit structures, respectively, as compared to the other existing designs. Also simulation results indicated that the proposed design is more immune against noises compared to the other designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Johnson, L., Levine, A., Smith, R., & Stone, S. (2010). The 2010 Horizon report. ERIC.

  2. Sarwar, M., & Soomro, T. R. (2013). Impact of Smartphone’s on society. European Journal of Scientific Research, 98, 216.

    Google Scholar 

  3. Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. (1992). Low-power CMOS digital design. IEICE Transactions on Electronics, 75, 371–382.

    Google Scholar 

  4. Oklobdzija, V. G., & Krishnamurthy, R. K. (2007). High performance energy efficient microprocessor design. Berlin: Springer.

    Google Scholar 

  5. Rabaey, J. M., & Pedram, M. (2012). Low power design methodologies. Berlin: Springer.

    Google Scholar 

  6. Alioto, M., & Palumbo, G. (2002). Analysis and comparison on full adder block in submicron technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10, 806–823.

    Article  Google Scholar 

  7. Weste, N., Harris, D., & Banerjee, A. (2005). Cmos VLSI design: A circuits and systems perspective. Delhi: Pearson Education.

    Google Scholar 

  8. Chang, C. H., Gu, J., & Zhang, M. (2005). A review of 0.18 \(\mu\)m full adder performances for tree structured arithmetic circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13, 686–695.

    Article  Google Scholar 

  9. Goel, S., Kumar, A., & Bayoumi, M. A. (2006). Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14, 1309–1321.

    Article  Google Scholar 

  10. Navi, K., Kavehei, O., Rouholamini, M., Sahafi, A., Mehrabi, S., & Dadkhahi, N. (2008). Low-power and high-performance 1-bit CMOS full adder cell. Journal of Computational Physics, 3, 48–54.

    Google Scholar 

  11. Aguirre-Hernandez, M., & Linares-Aranda, M. (2011). CMOS full adders for energy-efficient arithmetic applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19, 718–721.

    Article  Google Scholar 

  12. Bhattacharyya, P., Kundu, B., Ghosh, S., Kumar, V., & Dandapat, A. (2015). Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23, 2001–2008.

    Article  Google Scholar 

  13. Kuhn, K. J. (2012). Considerations for ultimate CMOS scaling. IEEE Transactions on Electron Devices, 59, 1813–1828.

    Article  Google Scholar 

  14. Marsh, G. (2003). Moore’s law at the extremes. Materials Today, 6, 28–30.

    Article  Google Scholar 

  15. Thompson, S. E., & Parthasarathy, S. (2006). Moore’s law: The future of Si microelectronics. Materials Today, 9, 20–25.

    Article  Google Scholar 

  16. Chau, R., Doyle, B., Datta, S., Kavalieros, J., & Zhang, K. (2007). Itegrated nanoelectronics for the future. Nature Materials, 6, 810–812.

    Article  Google Scholar 

  17. Markov, I. L. (2014). Limits on fundamental limits to computation. Nature, 512, 147–154.

    Article  Google Scholar 

  18. Cavin, R. K., Lugli, P., & Zhirnov, V. V. (2012). Science and engineering beyond Moore’s law. Proceedings IEEE, 100, 1720–1749 (Special Centennial Issue).

    Article  Google Scholar 

  19. Franklin, A. D. (2013). Electronics: The road to carbon nanotube transistors. Nature, 498, 443–444.

    Article  Google Scholar 

  20. Robertson, J. (2007). Growth of nanotubes for electronics. Materials Today, 10, 36–43.

    Article  Google Scholar 

  21. Peng, L. M., Zhang, Z., & Wang, S. (2014). Carbon nanotube electronics: Recent advances. Materials Today, 17, 433–442.

    Article  Google Scholar 

  22. Appenzeller, J. (2008). Carbon nanotubes for high-performance electronics—Progress and prospect. Proceedings IEEE, 96, 201–211.

    Article  Google Scholar 

  23. Raychowdhury, A., Keshavarzi, A., Kurtin, J., De, V., & Roy, K. (2006). Carbon nanotube field-effect transistors for high-performance digital circuits. IEEE Transactions on Electron Devices, 53, 2718–2726.

    Article  Google Scholar 

  24. Avouris, P., Chen, Z., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2, 605–615.

    Article  Google Scholar 

  25. Appenzeller, J., Knoch, J., Martel, R., Derycke, V., Wind, S. J., & Avouris, P. (2002). Carbon nanotube electronics. IEEE Transactions on Nanotechnology, 1, 184–189.

    Article  Google Scholar 

  26. Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C. (2001). Logic circuits with carbon nanotube transistors. Science, 294, 1317–1320.

    Article  Google Scholar 

  27. Chen, Z., Wong, H. S. P., Mitra, S., Bol, A., Peng, L., Hills, G., & Thissen, N. (2014). Carbon nanotubes for high-performance logic. MRS Bulletin, 39, 719–726.

    Article  Google Scholar 

  28. Shulaker, M. M., Hills, G., Patil, N., Wei, H., Chen, H. Y., Wong, H. S. P., & Mitra, S. (2013). Carbon nanotube computer. Nature, 501, 526–530.

    Article  Google Scholar 

  29. Kreupl, F. (2013). Electronics: The carbon-nanotube computer has arrived. Nature, 7468, 495–496.

    Article  Google Scholar 

  30. Sharifi, F., Moaiyeri, M. H., Navi, K., & Bagherzadeh, N. (2015). Robust and energy-efficient carbon nanotube FET-based MVL gates; A novel design approach. Microelectronics Journal, 46, 1333–1342.

    Article  Google Scholar 

  31. Moaiyeri, M. H., Khastoo, N., Nasiri, M., Navi, K., & Bagherzadeh, N. (2016). An efficient analog-to-digital converter based on carbon nanotube FETs. Journal of Low Power Electronics, 12, 150–157.

    Article  Google Scholar 

  32. Sheng, L., Kim, Y., & Lombardi, F. (2012). Design of a ternary memory cell using CNTFETs. IEEE Transactions on Nanotechnology, 11, 1019–1025.

    Article  Google Scholar 

  33. Bozorgmehr, A., Moaiyeri, M. H., Navi, K., & Bagherzadeh, N. (2017). Ultra-efficient fuzzy min/max circuits based on carbon nanotube FETs. IEEE Transactions on Fuzzy Systems, PP, 1–1.

    Google Scholar 

  34. Sharifi, F., Panahi, A., Sharifi, H., Navi, K., Bagherzadeh, N., & Thapliyal, H. (2016). Design of quaternary 4–2 and 5–2 compressors for nanotechnology. Computers & Electrical Engineering, 56, 64–74.

    Article  Google Scholar 

  35. Moghaddam, M., Moaiyeri, M. H., & Eshghi, M. (2016). Design and evaluation of an efficient Schmitt trigger-based hardened latch in CNTFET technology. IEEE Transactions on Device and Materials Reliability, 17, 267–277.

    Article  Google Scholar 

  36. Deng, J., & Philip Wong, H. S. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices, 54, 3186–3194.

    Article  Google Scholar 

  37. Deng, J., & Philip Wong, H. S. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices, 54, 3195–3205.

    Article  Google Scholar 

  38. Frustaci, F., Pasquale, C., Stefania, P., & Giuseppe, C. (2008). High-performance noise-tolerant circuit techniques for CMOS dynamic logic. IET Circuits, Devices & Systems, 6, 537–548.

    Article  Google Scholar 

  39. Katopis, G. A. (1985). Delta-I noise specification for a high-performance computing machine. Proceedings of IEEE, 73, 1405–1415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, M., Shafiee, N., Sharifi, F. et al. Energy efficient hybrid full adder design for digital signal processing in nanoelectronics. Analog Integr Circ Sig Process 109, 135–151 (2021). https://doi.org/10.1007/s10470-021-01831-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01831-0

Keywords

Navigation