Skip to main content
Log in

Study and experimentation of a 6-dB attenuation low-pass NGD circuit

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Because of its counterintuitive nature, the Negative Group Delay (NGD) remains as an uncommon and unfamiliar electronic function. For this reason, the design and analysis of NGD circuits are not well-known for most of electronic designers. This paper initiates a basic and easy to understand theory, in addition to a design methodology for the low-pass NGD function. The circuit theory on the low-pass NGD function is described using an NGD passive topology which is constituted by a RC-parallel network with a resistive load. The NGD analysis and synthesis equations in function of NGD specifications are provided and a proof-of-concept of 6-dB low-pass NGD circuits has been designed, simulated, fabricated and tested. Frequency and time domain analyses have been performed to validate the low-pass NGD function. Theoretical and simulated results are in very good agreement and an NGD has been obtained in measurement for the proposed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Negi, R., Purwar, S., & Kar, H. (2012). Delay-dependent stability analysis of discrete time delay systems with actuator saturation. Intelligent Control and Automation, 3(1), 34–43. https://doi.org/10.4236/ica.2012.31005.

    Article  MATH  Google Scholar 

  2. Hu, J.-W., Zhan, X.-S., Wu, J., & Yan, H.-C. (2020). Optimal tracking performance of NCSs with time-delay and encoding-decoding constraints. International Journal of Control, Automation, and Systems, 18(4), 1012–1022. https://doi.org/10.1007/s12555-019-0300-5.

    Article  Google Scholar 

  3. Hwang, M.-E., Jung, S.-O., & Roy, K. (2009). Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7), 1428–1441. https://doi.org/10.1109/TCSI.2008.2006217.

    Article  MathSciNet  Google Scholar 

  4. Kang, S.-M., & Chen, H. Y. (1990). A global delay model for domino cmos circuits with application to transistor sizing. International Journal of Circuit Theory and Applications, 18(3), 289–306. https://doi.org/10.1002/cta.4490180306.

    Article  MathSciNet  Google Scholar 

  5. Ravelo, B. (2012). Delay modelling of high-speed distributed interconnect for the signal integrity prediction. European Physical Journal Applied Physics, 57(31002), 1–8. https://doi.org/10.1051/epjap/2012110374.

    Article  Google Scholar 

  6. Groenewold, G. (2007). Noise and group delay in active filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(7), 1471–1480. https://doi.org/10.1109/TCSI.2007.900181.

    Article  Google Scholar 

  7. Myoung, S.-S., Kwon, B.-S., Kim, Y.-H., & Yook, J.-G. (2007). Effect of group delay in RF BPF on impulse radio systems. IEICE Tranactions Communications, 90(12), 3514–3522.

    Article  Google Scholar 

  8. Li, H. F., Leung, S. C., & Lam, P. N. (1994). Optimised synthesis of delay-insensitive circuits using time-sharing. IEE Proceedings - Computers and Digital Techniques, 141(2), 111–118. https://doi.org/10.1049/ip-cdt:19941001.

    Article  Google Scholar 

  9. Narasimhan, S. V., Hazarathaiah, M., & Giridhar, P. V. S. (2005). Channel blind identification based on cyclostationarity and group delay. Signal Processing, 85(7), 1275–1286. https://doi.org/10.1016/j.sigpro.2005.01.011.

    Article  MATH  Google Scholar 

  10. Heyde, E. C. (1995). Theoretical methodology for describing active and passive recirculating delay line systems. Electronics Letters, 31(23), 2038–2039. https://doi.org/10.1049/el:19951356.

    Article  Google Scholar 

  11. Vemagiri, J., Chamarti, A., Agarwal, M., & Varahramyan, K. (2007). Transmission line delay-based radio frequency identification (RFID) tag. Microwave and Optical Technology Letters, 49(8), 1900–1904. https://doi.org/10.1002/mop.22599.

    Article  Google Scholar 

  12. Wijenayake, C., Xu, Y., Madanayake, A., Belostotski, L., & Bruton, L. T. (2012). RF analogbeamforming fan filters using CMOS all-pass time delay approximations. IEEE Transactions on Circuits and Systems: Regular Papers, 59(5), 1061–1073. https://doi.org/10.1109/TCSI.2012.2185294.

    Article  MathSciNet  MATH  Google Scholar 

  13. Alves, L. N., & Aguiar, R. L. (2008). A time-delay technique to improve GBW on negative feedback amplifiers. International Journal of Circuit Theory and Applications, 36(4), 375–386. https://doi.org/10.1002/cta.441.

    Article  MATH  Google Scholar 

  14. Gau, R. S., Hsieh, J., & Lien, C. (2008). Global exponential stability for uncertain bidirectional associative memory neural networks with multiple time-varying delays via LMI approach. International Journal of Circuit Theory and Applications, 36(4), 451–471. https://doi.org/10.1002/cta.449.

    Article  MATH  Google Scholar 

  15. Ravelo, B. (2013). Recovery of microwave-digital signal integrity with NGD circuits. Photonics and Optoelectronics (P&O), 2(1), 8–16.

    Google Scholar 

  16. Kandic, M., & Bridges, G. E. (2011). Bilateral gain-compensated negative group delay circuit. IEEE Microwave and Wireless Components Letters, 21(6), 308–310. https://doi.org/10.1109/LMWC.2011.2132696.

    Article  Google Scholar 

  17. Meng, Y., Wang, Z., Fang, S., Shao, T., & Liu, H. (2018). A broadband switch-less bi-directional amplifier with negative-group-delay matching circuits. Electronics, 7(9), 158. https://doi.org/10.3390/electronics7090158.

    Article  Google Scholar 

  18. Mitchell, M. W., & Chiao, R. Y. (1998). Causality and negative group-delays in a simple bandpass amplifier. American Journal of Physics, 66, 14–19. https://doi.org/10.1119/1.18813.

    Article  Google Scholar 

  19. Mitchell, M. W., & Chiao, R. Y. (1997). Negative group-delay and ‘fronts’ in a causal systems: an experiment with very low frequency bandpass amplifiers. Physics Letters A, 230, 133–138. https://doi.org/10.1016/S0375-9601(97)00244-2.

    Article  Google Scholar 

  20. Nakanishi, T., Sugiyama, K., & Kitano, M. (2002). Demonstration of negative group-delays in a simple electronic circuit. American Journal of Physics, 70(11), 1117–1121. https://doi.org/10.1119/1.1503378.

    Article  Google Scholar 

  21. Kitano, M., Nakanishi, T., & Sugiyama, K. (2003). Negative group-delay and superluminal propagation: An electronic circuit approach . IEEE Journal of Selected Topics in Quantum Electronics, 9(1), 43–51. https://doi.org/10.1109/JSTQE.2002.807979.

    Article  Google Scholar 

  22. Munday, J. N., & Henderson, R. H. (2004). Superluminal time advance of a complex audio signal. Applied Physics Letters, 85, 503–504. https://doi.org/10.1063/1.1773926.

    Article  Google Scholar 

  23. Jian-Wu, W., & Zheng-He, F. (2015). Time-domain nature of group delay. Chinese Physics B, 24(10), 100301. https://doi.org/10.1088/1674-1056/24/10/100301/meta.

    Article  Google Scholar 

  24. Wan, F., Wang, J., Ravelo, B., Ge, J., & Li, B. (2019). Time-domain experimentation of NGD active RC-network cell. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(4), 562–566. https://doi.org/10.1109/ACCESS.2019.2922422.

    Article  Google Scholar 

  25. Mao, H., Ye, L., & Wang, L.-G. (2019). High fidelity of electric pulses in normal and anomalous cascaded electronic circuit systems. Results in Physics, 13(102348), 1–9. https://doi.org/10.1016/j.rinp.2019.102348.

    Article  Google Scholar 

  26. Bukhman, N. S., & Bukhman, S. V. (2004). On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption. Radiophysics and Quantum Electronics, 47(1), 66–76. https://doi.org/10.1023/B:RAQE.0000031672.70934.3a.

    Article  Google Scholar 

  27. Ahn, K.-P., Ishikawa, R., Saitou, A., & Honjo, K. (2009). Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations. IEICE Transactions on Electronics, E92-C(9), 1176–1181. https://doi.org/10.1587/transele.E92.C.1176.

    Article  Google Scholar 

  28. Abuelma’atti, M. T., & Khalifa, Z. J. (2018). A new CFOA-based negative group delay cascadable circuit. Analog Integrated Circuits and Signal Processing, 95, 351–355. https://doi.org/10.1007/s10470-018-1172-y.

    Article  Google Scholar 

  29. Ravelo, B. (2014). Similitude between the NGD function and filter gain behaviours. International Journal of Circuit Theory and Applications, 42(10), 1016–1032. https://doi.org/10.1002/cta.1902.

    Article  Google Scholar 

  30. Ravelo B. (2017) On the low-pass, high-pass, bandpass and stop-band NGD RF passive circuits. URSI Radio Science Bulletin, vol. 2017, no. 363, pp. 10–27, https://doi.org/10.23919/URSIRSB.2017.8409424

  31. Ravelo, B. (2016). First-order low-pass negative group delay passive topology. Electronics Letters, 52(2), 124–126. https://doi.org/10.1049/el.2015.2856.

    Article  Google Scholar 

  32. [Online]. Available: http://mathworld.wolfram.com/SincFunction.html. [Accessed 01 Mar 2020]

Download references

Acknowledgement

This research work was supported in part by NSFC under Grant 61971230 and 61601233, and in part by Jiangsu Distinguished Professor program and Six Major Talents Summit of Jiangsu Province (2019-DZXX-022), and in part by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant SJKY19_0974, and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenceslas Rahajandraibe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randriatsiferana, R., Gan, Y., Wan, F. et al. Study and experimentation of a 6-dB attenuation low-pass NGD circuit. Analog Integr Circ Sig Process 110, 105–114 (2022). https://doi.org/10.1007/s10470-021-01826-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01826-x

Keywords

Navigation