Skip to main content
Log in

Design and validation of an artificial neural network based on analog circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper focuses on the design and validation of an analog artificial neural network. Basic building blocks of the analog ANN have been constructed in UMC 90 nm device technology. Performance metrics of the building blocks have been demonstrated through circuit simulations. The weights of the ANN have been estimated through an automated back-propagation algorithm, which is running circuit simulations during weight optimization. Two case studies, the operation an XOR logic gate and a full adder circuit have been captured using the proposed analog ANN. Monte Carlo analysis of the XOR gate reveals that the analog ANN operates with an accuracy of 99.85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akshatha, B. C., & Akshintala, V. K. (2009). Low voltage, low power, high linearity, high speed CMOS voltage mode analog multiplier. In 2009 2nd international conference on emerging trends in engineering technology (pp. 149–154). https://doi.org/10.1109/ICETET.2009.141.

  2. Aksin, D. Y., Basyurt, P. B., & Uyanik, H. U. (2009). Single-ended input four-quadrant multiplier for analog neural networks. In 2009 European conference on circuit theory and design (pp. 307–310). https://doi.org/10.1109/ECCTD.2009.5274983.

  3. Bai, Y., Fan, D., & Lin, M. (2018). Stochastic-based synapse and soft-limiting neuron with spintronic devices for low power and robust artificial neural networks. IEEE Transactions on Multi-Scale Computing Systems, 4(3), 463–476. https://doi.org/10.1109/TMSCS.2017.2787109.

    Article  Google Scholar 

  4. Bayraktaroglu, I., Ogrenci, A. S., Dundar, G., Balkir, S., & Alpaydin, E. (1997). An analog neural network synthesis system. In Proceedings of international conference on neural networks (pp. 910–915).

  5. Chen, Z., Zheng, Y., Choong, F. C., & Je, M. (2012). A low-power variable-gain amplifier with improved linearity: Analysis and design. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2176–2185. https://doi.org/10.1109/TCSI.2012.2185331.

    Article  MathSciNet  Google Scholar 

  6. Chen, C., & Li, Z. (2006). A low-power cmos analog multiplier. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(2), 100–104. https://doi.org/10.1109/TCSII.2005.857089.

    Article  Google Scholar 

  7. Colli, G., & Montecchi, F. (1996). Low voltage low power CMOS four-quadrant analog multiplier for neural network applications. In 1996 IEEE international symposium on circuits and systems circuits and systems connecting the world. ISCAS 96 (Vol. 1, pp. 496–499). https://doi.org/10.1109/ISCAS.1996.539993.

  8. Du, Y., Du, L., Gu, X., Du, J., Wang, X. S., Hu, B., et al. (2018). An analog neural network computing engine using CMOS-compatible charge-trap-transistor (CTT). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. https://doi.org/10.1109/TCAD.2018.2859237.

    Article  Google Scholar 

  9. Gencer, F. B., Xhafa, X., İnam, B. B., & Berke Yelten, M. (2019). Design of ananalog circuit-based artificial neural network. In 2019 11th international conference on electrical and electronics engineering (ELECO) (pp. 379–383). https://doi.org/10.23919/ELECO47770.2019.8990559.

  10. Gilbert, B. (1968). A precise four-quadrant multiplier with subnanosecond response. IEEE Journal of Solid-State Circuits, 3(4), 365–373.

    Article  Google Scholar 

  11. Giordano, M., Cristiano, G., Ishibashi, K., Ambrogio, S., Tsai, H., Burr, G. W., et al. (2019). Analog-to-digital conversion with reconfigurable function mapping for neural networks activation function acceleration. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(2), 367–376. https://doi.org/10.1109/JETCAS.2019.2911537.

    Article  Google Scholar 

  12. Haykin, S. O. (2009). Neural networks and learning machines (3rd ed.). New York: International Edition.

    Google Scholar 

  13. Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.

    Article  Google Scholar 

  14. Khodabandehloo, G., Mirhassani, M., & Ahmadi, M. (2012). Analog implementation of a novel resistive-type sigmoidal neuron. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(4), 750–754.

    Article  Google Scholar 

  15. Merkel, C., Kudithipudi, D., & Sereni, N. (2013). Periodic activation functions in memristor-based analog neural networks. In The 2013 international joint conference on neural networks (IJCNN) (pp. 1–7). https://doi.org/10.1109/IJCNN.2013.6706772.

  16. Moon, S., Shin, K., & Jeon, D. (2019). Enhancing reliability of analog neural network processors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(6), 1455–1459.

    Article  Google Scholar 

  17. Nandini, A., Madhavan, S., & Sharma, C. (2012). Design and implementation of analog multiplier with improved linearity. International Journal of VLSI Design and Communication Systems, 3(5), 93.

    Article  Google Scholar 

  18. Ngwar, M., & Wight, J. (2015). A fully integrated analog neuron for dynamic multi-layer perceptron networks. In 2015 international joint conference on neural networks (IJCNN) (pp. 1–8). https://doi.org/10.1109/IJCNN.2015.7280448.

  19. Orgenci, A. S., Dundar, G., & Balkur, S. (2001). Fault-tolerant training of neural networks in the presence of MOS transistor mismatches. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(3), 272–281. https://doi.org/10.1109/82.924069.

    Article  Google Scholar 

  20. Satyanarayana, S., Tsividis, Y. P., & Graf, H. P. (1992). A reconfigurable VLSI neural network. IEEE Journal of Solid-State Circuits, 27(1), 67–81. https://doi.org/10.1109/4.109558.

    Article  Google Scholar 

  21. Soo, D. C., & Meyer, R. G. (1982). A four-quadrant NMOS analog multiplier. IEEE Journal of Solid-State Circuits, 17(6), 1174–1178.

    Article  Google Scholar 

  22. Vittoz, E. A. (1990). Analog VLSI implementation of neural networks. In IEEE international symposium on circuits and systems (Vol. 4, pp. 2524–2527). https://doi.org/10.1109/ISCAS.1990.112524.

  23. Yelten, M. B., Franzon, P. D., & Steer, M. B. (2012). Comparison of modeling techniques in circuit variability analysis. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 25(3), 288–302. https://doi.org/10.1002/jnm.836.

    Article  Google Scholar 

  24. You, Z., & Lu, C. (2018). A heuristic fault diagnosis approach for electro-hydraulic control system based on hybrid particle swarm optimization and Levenberg–Marquardt algorithm. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-018-0962-5.

    Article  Google Scholar 

  25. Zamanlooy, B., & Mirhassani, M. (2017). An analog CVNS-based sigmoid neuron for precise neurochips. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(3), 894–906.

    Article  Google Scholar 

  26. Zhou, P., & Austin, J. (1998). Learning criteria for training neural network classifiers. Neural Computing and Applications, 7(4), 334–342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Berke Yelten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gencer, F.B., Xhafa, X., İnam, B.B. et al. Design and validation of an artificial neural network based on analog circuits. Analog Integr Circ Sig Process 106, 475–483 (2021). https://doi.org/10.1007/s10470-020-01713-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01713-x

Keywords

Navigation