Skip to main content
Log in

Design and implementation of a 60–113 GHz down-conversion mixer in 90 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 60–113 GHz down-conversion mixer in 90 nm CMOS is demonstrated. The mixer adopts an RL core IF load, which is based on the series of a peaking inductor (L) and a parallel combination of the cross-coupled PMOS transistors (CCPT) and the diode-connected NMOS transistors (DCNT), i.e. L-CCPT–DCNT-based core IF load. Conversion gain (CG) can be significantly enhanced due to the increase of load impedance. The bandwidth can be improved due to the inductive peaking effect of the RL core IF load. The mixer consumes 3.2 mW and achieves RF-port input reflection coefficient of − 10 to − 31.2 dB for 82.8–97.2 GHz. The mixer attains CG of 16.8 ± 1.5 dB for 60–113 GHz. The corresponding 3 dB CG bandwidth is 53 GHz. Moreover, for 70–100 GHz, the mixer achieves CG of 17.4–18.3 dB and LO-RF isolation of 39.2–54.4 dB, one of the best CG and LO-RF isolation results ever reported for down-conversion mixers around 77 GHz or 94 GHz. These prominent results indicate that the down-conversion mixer is suitable for 77 GHz automobile radar and 94 GHz imaging radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques,60(8), 2590–2604.

    Article  Google Scholar 

  2. Chen, H. K., Lin, Y. S., & Lu, S. S. (2010). Analysis and design of a 1.6–28 GHz compact wideband LNA in 90 nm CMOS using a π-match input network. IEEE Transactions on Microwave Theory and Techniques,58(8), 2092–2104.

    Article  Google Scholar 

  3. Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques,58(2), 287–296.

    Article  Google Scholar 

  4. Lee, C. J., & Park, C. S. (2016). A D-band gain-boosted current bleeding down-conversion mixer in 65 nm CMOS for chip-to-chip communication. IEEE Microwave and Wireless Components Letters,26(2), 143–145.

    Article  Google Scholar 

  5. Lin, Y. S., & Li, G. H. (2014). A W-band down-conversion mixer in 90 nm CMOS with excellent matching and port-to-port isolation for automotive radars. In International symposium on wireless communication systems, pp. 54–58.

  6. Jang, J. G., Oh, J. T., & Hong, S. (20156). A 79 GHz gm-boosted sub-harmonic mixer with high conversion gain in 65 nm CMOS. In IEEE radio frequency integrated circuits (RFIC), pp. 11–14.

  7. Zhang, N., Xu, H., Wu, H. T., & Kenneth, K. O. (2009). W-band active down-conversion mixer in bulk CMOS. IEEE Microwave and Wireless Components Letters,19(2), 98–100.

    Article  Google Scholar 

  8. Chou, M. L., Huang, F. H., & Chiu, H. C. (2013). A low LO power V-band Gilbert-cell down-conversion mixer using 90 nm CMOS technology. In Proceedings of international conference on computational problem-solving (ICCP), pp. 184–186.

  9. Shi, J., Li, L., & Cui, T. J. (2013). A 60-GHz broadband Gilbert-cell down conversion mixer in a 65-nm CMOS. In Proceedings of international conference on electron devices and solid-state circuits, pp. 1–2.

  10. Tsai, J. H., Yang, H. Y., Huang, T. W., & Wang, H. (2008). A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology. IEEE Microwave and Wireless Components Letters,18(8), 554–556.

    Article  Google Scholar 

  11. Ciocoveanu, C., Rimmelspacher, J., Weigel, R., Hagelauer, A., & Issakov, V. (2018). A 1.8-mW low power, PVT-resilient, high linearity, modified Gilbert-cell down-conversion mixer in 28-nm CMOS. In IEEE topical meeting on silicon monolithic integrated circuits in RF systems (SiRF), pp. 19–22.

  12. Kim, J., Kornegay, K. T., Alvarado, J., Jr., Lee, C. H., & Laskar, J. (2009). W-band double-balanced down-conversion mixer with Marchand baluns in silicon–germanium technology. Electronics Letters,45(16), 841–843.

    Article  Google Scholar 

  13. Lin, Y. S., & Nguyen, V. K. (2017). 94 GHz CMOS power amplifiers using miniature dual Y-shaped combiner with RL load. IEEE Transactions on Circuits and Systems-I: Regular Papers,64(6), 1285–1298.

    Article  Google Scholar 

  14. Terrovitis, M. T., & Meyer, R. G. (1999). Noise in current-commutating CMOS mixers. IEEE Journal of Solid-State Circuits,34(6), 772–783.

    Article  Google Scholar 

  15. Lin, Y. S., Liu, F. C., & Wen, W. C. (2014). Design and implementation of squared and octagonal W-band CMOS Marchand baluns for W-band communication systems. Microwave and Optical Technology Letters,56(10), 2205–2211.

    Article  Google Scholar 

  16. Razavi, B. (2012). RF microelectronics (2nd ed.). Bejing: Electronic Inductry Press.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under contracts MOST105-2221-E-260-025-MY3 and MOST106-2221-E-260-025-MY2. The authors are very grateful for the support from Taiwan Semiconductor Research Institute (TSRI), Taiwan, for chip fabrication and high-frequency measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Lan, KS. Design and implementation of a 60–113 GHz down-conversion mixer in 90 nm CMOS. Analog Integr Circ Sig Process 104, 109–119 (2020). https://doi.org/10.1007/s10470-020-01654-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01654-5

Keywords

Navigation