Skip to main content
Log in

Analog circuit soft fault diagnosis utilizing matrix perturbation analysis

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel approach of analog circuit soft fault diagnosis utilizing matrix perturbation analysis. This method establishes an output response square matrix whose elements will change if circuits fail. Fault can be diagnosed via comparing the difference between the fault-free output matrix and the faulty. According to matrix theory, matrix spectral radius and perturbation matrix m1 norm are utilized to describe the difference. Differing from artificial intelligence algorithms, it is all completely unnecessary to train samples, and can be applied to more complex circuit diagnostics with fewer test nodes. Fault diagnosis, fault location and parameter identification can be realized by quadratic curve fitting in single fault mode. Experiments confirm the feasibility and correctness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Binu, D., & Kariyappa, B. S. (2017). A survey on fault diagnosis of analog circuits: Taxonomy and state of the art. AEÜ - International Journal of Electronics and Communications, 73, 68–83.

    Article  Google Scholar 

  2. Mohsen, A. K. A., & El-Yazeed, M. F. A. (2004). Selection of input stimulus for fault diagnosis of analog circuits using ARMA model. AEÜ - International Journal of Electronics and Communications, 58(3), 212–217.

    Article  Google Scholar 

  3. Liu, Z., Liu, T., Han, J., Bu, S., Tang, X., & Pecht, M. (2017). Signal model-based fault coding for diagnostics and prognostics of analog electronic circuits. IEEE Transactions on Industrial Electronics, 64(1), 605–614.

    Article  Google Scholar 

  4. El-Yazeed, M. F. A., & Mohsen, A. A. K. (2003). A preprocessor for analog circuit fault diagnosis based on Prony’s method. AEÜ - International Journal of Electronics and Communications, 57(1), 16–22.

    Article  Google Scholar 

  5. Yong, D., Yibing, S., & Wei, Z. (2012). Diagnosis of soft faults in analog integrated circuits based on fractional correlation. Journal of Semiconductors, 33(8), 085007.

    Article  Google Scholar 

  6. Okatan, A., Hajiyev, C., & Hajiyeva, U. (2009). Fault detection in sensor information fusion Kalman filter. AEÜ - International Journal of Electronics and Communications, 63(9), 762–768.

    Article  Google Scholar 

  7. Valinataj, M., Mohammadi, S., Plosila, J., Liljeberg, P., & Tenhunen, H. (2011). A reconfigurable and adaptive routing method for fault-tolerant mesh-based networks-on-chip. AEÜ - International Journal of Electronics and Communications, 65(7), 630–640.

    Article  Google Scholar 

  8. Ćirić, V., Kolokotronis, J., & Milentijević, I. (2009). Partial error tolerance for bit-plane fir filter architecture. AEÜ - International Journal of Electronics and Communications, 63(5), 398–405.

    Article  Google Scholar 

  9. Haidi, D., Gang, L., Junti, W., Dianheng, P., & Hui, X. (2017). Strategy for soft fault diagnosis on analog circuits with tolerance. In 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI) (pp. 331–335). IEEE.

  10. Yu, W., & He, Y. (2015). Analog circuit fault diagnosis via sensitivity computation. Journal of Electronic Testing, 31(1), 119–122.

    Article  Google Scholar 

  11. Alippi, C., Catelani, M., Fort, A., & Mugnaini, M. (2002). Sbt soft fault diagnosis in analog electronic circuits: A sensitivity-based approach by randomized algorithms. IEEE Transactions on Instrumentation and Measurement, 51(5), 1116–1125.

    Article  Google Scholar 

  12. Tadeusiewicz, M., Halgas, S., & Korzybski, M. (2002). An algorithm for soft-fault diagnosis of linear and nonlinear circuits. Circuits & Systems I Fundamental Theory & Applications IEEE Transactions on, 49(11), 1648–1653.

    Article  MathSciNet  MATH  Google Scholar 

  13. Tang, X., & Xu, A. (2016). Multi-class classification using kernel density estimation on k-nearest neighbours. Electronics Letters, 52(8), 600–602.

    Article  Google Scholar 

  14. Zhang, T., & Li, T. (2019). A novel approach of analog circuit fault diagnosis utilizing RFT noise estimation. Analog Integrated Circuits and Signal Processing, 98(3), 517–526. https://doi.org/10.1007/s10470-018-1351-x.

    Article  Google Scholar 

  15. Aminian, F., Aminian, M., & Collins, H. W. (2002). Analog fault diagnosis of actual circuits using neural networks. IEEE Transactions on Instrumentation and Measurement, 51(3), 544–550.

    Article  Google Scholar 

  16. Aminian, M., & Aminian, F. (2000). Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(2), 151–156.

    Article  Google Scholar 

  17. Ma, Q., He, Y., & Zhou, F. (2016). A new decision tree approach of support vector machine for analog circuit fault diagnosis. Analog Integrated Circuits & Signal Processing, 88(3), 455–463.

    Article  Google Scholar 

  18. Tan, Y., He, Y., Cui, C., & Qiu, G. (2008). A novel method for analog fault diagnosis based on neural networks and genetic algorithms. IEEE Transactions on Instrumentation and Measurement, 57(11), 2631–2639.

    Article  Google Scholar 

  19. Yuan, Z., He, Y., Yuan, L., & Cheng, Z. (2017). A diagnostics method for analog circuits based on improved kernel entropy component analysis. Journal of Electronic Testing, 33(6), 697–707.

    Article  Google Scholar 

  20. Xiao, Y., & Feng, L. (2012). A novel linear ridgelet network approach for analog fault diagnosis using wavelet-based fractal analysis and kernel PCA as preprocessors. Measurement, 45(3), 297–310.

    Article  Google Scholar 

  21. Golonek, T., & Machniewski, J. (2018). Analog circuit specification testing by means of Walsh–Hadamard transform and multiple regression supported by evolutionary computations. Circuits, Systems, and Signal Processing, 37(7), 2736–2771. https://doi.org/10.1007/s00034-017-0708-1.

    Article  MathSciNet  Google Scholar 

  22. Han, D., Zhao, N., & Shi, P. (2017). A new fault diagnosis method based on deep belief network and support vector machine with Teager–Kaiser energy operator for bearings. Advances in Mechanical Engineering, 9(12), 168781401774311.

    Article  Google Scholar 

  23. He, W., He, Y., Luo, Q., & Zhang, C. (2018). Fault diagnosis for analog circuits utilizing time-frequency features and improved VVRKFA. Measurement Science & Technology, 29(4), 045004. https://doi.org/10.1088/1361-6501/aaa33a.

    Article  Google Scholar 

  24. He, W., He, Y., Li, B., & Zhang, C. (2018). Analog circuit fault diagnosis via joint cross-wavelet singular entropy and parametric t-SNE. Entropy, 20(8), 604.

    Article  Google Scholar 

  25. Khanlari, M., & Ehsanian, M. (2017). An improved KFCM clustering method used for multiple fault diagnosis of analog circuits. Circuits Systems & Signal Processing, 36(9), 3491–3513.

    Article  Google Scholar 

  26. Zhang, A., Huang, K., Wang, R., & Zhang, Z. (2017). A novel hybrid method for analog circuit fault classification. In IEEE, data driven control and learning systems conference (pp. 365–369). IEEE.

  27. Tadeusiewicz, M., & Korzybski, M. (2000). A method for fault diagnosis in linear electronic circuits. International Journal of Circuit Theory and Applications, 28(3), 245–262.

    Article  MATH  Google Scholar 

  28. Liu, D., & Starzyk, J. A. (2002). A generalized fault diagnosis method in dynamic analogue circuits. International Journal of Circuit Theory and Applications, 30(5), 487–510.

    Article  MATH  Google Scholar 

  29. Starzyk, J. A., Pang, J., Manetti, S., & Piccirilli, M. C. (2000). Finding ambiguity groups in low testability analog circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(8), 1125–1137.

    Article  MathSciNet  MATH  Google Scholar 

  30. Starzyk, J., & Liu, D. (2001). Multiple fault diagnosis of analog circuits by locating ambiguity groups of test equation. In IEEE international symposium on circuits and systems (Vol. 5, pp. 199–202). IEEE.

  31. Tadeusiewicz, M., & Hałgas, S. (2006). An algorithm for multiple fault diagnosis in analogue circuits. International Journal of Circuit Theory and Applications, 34(6), 607–615.

    Article  MATH  Google Scholar 

  32. Song, P., He, Y., & Cui, W. (2016). Statistical property feature extraction based on FRFT for fault diagnosis of analog circuits. Analog Integrated Circuits & Signal Processing, 87(3), 427–436.

    Article  Google Scholar 

  33. Pullman, N. J. (1976). Matrix theory and its applications. New York: Marcel Dekker, Inc.

    MATH  Google Scholar 

  34. Wilkinson, J. H. (1965). The algebraic eigenvalue problem. Oxford: Oxford University Press.

    MATH  Google Scholar 

  35. Stewart, G. W., & Sun, J. G. (1990). Matrix perturbation theory. New York: Harcourt Brace Jovanovich.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, T. Analog circuit soft fault diagnosis utilizing matrix perturbation analysis. Analog Integr Circ Sig Process 100, 181–192 (2019). https://doi.org/10.1007/s10470-019-01433-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01433-x

Keywords

Navigation