Skip to main content
Log in

Time-dependent dielectric breakdown (TDDB) reliability analysis of CMOS analog and radio frequency (RF) circuits

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a methodology to analyze the time dependent dielectric breakdown (TDDB) reliability of CMOS analog and radio frequency (RF) circuits has been proposed and applied to common circuit building blocks, including an operational amplifier, a RF mixer, and a comparator. The analysis includes both finding the transistors in the circuit topology that are the most sensitive to TDDB degradation, as well as, observing the trends of TDDB degradation over a series of nanoscale process technologies for each building block. Analysis outcomes suggest that the TDDB degradation resilience goes up for operational amplifiers and comparators whereas it decreases for RF mixers as the device channel lengths come down. The trends have been explained on the basis of the circuit block topology and device physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ker, M. D., & Chen, J. S. (2008). Impact of mosfet gate-oxide reliability on cmos operational amplifier in a 130-nm low-voltage process. IEEE Transactions on Device and Materials Reliability, 8(2), 394.

    Article  Google Scholar 

  2. Fang, J., & Sapatnekar, S. S. (2012). Scalable methods for analyzing the circuit failure probability due to gate oxide breakdown. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(11), 1960.

    Article  Google Scholar 

  3. Chen, J. S., & Ker, M. D. (2006). In 13th International symposium on the physical and failure analysis of integrated circuits, 2006 (pp. 45–48). IEEE.

  4. Yang, K., & Milor, L. (2015). In 2015 20th international mixed-signal testing workshop (IMSTW) (pp. 1–6). IEEE.

  5. Avellan, A., & Krautschneider, W. H. (2004). Impact of soft and hard breakdown on analog and digital circuits. IEEE Transactions on Device and Materials Reliability, 4(4), 676. https://doi.org/10.1109/TDMR.2004.836729.

    Article  Google Scholar 

  6. Fernandez, R., Martin-Martinez, J., Rodriguez, R., Nafria, M., & Aymerich, X. H. (2008). Gate oxide wear-out and breakdown effects on the performance of analog and digital circuits. IEEE Transactions on Electron Devices, 55(4), 997. https://doi.org/10.1109/TED.2008.917334.

    Article  Google Scholar 

  7. Li, Q., Li, W., Zhang, J., & Yuan, J. S. (2002). In 2002 IEEE radio frequency integrated circuits (RFIC) symposium. Digest of papers (Cat. No.02CH37280) (pp. 399–402). https://doi.org/10.1109/RFIC.2002.1012076.

  8. Yang, H., Yuan, J. S., Liu, Y., & Xiao, E. (2003). Effect of gate-oxide breakdown on RF performance. IEEE Transactions on Device and Materials Reliability, 3(3), 93. https://doi.org/10.1109/TDMR.2003.816656.

    Article  Google Scholar 

  9. Yang, K., & Milor, L. (2015). In 2015 IEEE 20th international mixed-signals testing workshop (IMSTW) (pp. 1–6). https://doi.org/10.1109/IMS3TW.2015.7177872.

  10. Chen, J. S., & Ker, M. D. (2007). The impact of gate-oxide breakdown on common-source amplifiers with diode-connected active load in low-voltage cmos processes. IEEE Transactions on Electron Devices, 54(11), 2860. https://doi.org/10.1109/TED.2007.906938.

    Article  Google Scholar 

  11. Kutty, K., Yuan, J. S., & Chen, S. (2011). Evaluation of gate oxide breakdown effect on cascode class e power amplifier performance. Microelectronics Reliability, 51(8), 1302.

    Article  Google Scholar 

  12. Saniç, M. T., & Yelten, M. B. (2017). In 2017 10th international conference on electrical and electronics engineering (ELECO) (pp. 476–480)

  13. Bernstein, J. B., Gurfinkel, M., Li, X., Walters, J., Shapira, Y., & Talmor, M. (2006). Electronic circuit reliability modeling. Microelectronics Reliability, 46(12), 1957.

    Article  Google Scholar 

  14. Yelten, M. B., Franzon, P. D., & Steer, M. B. (2011). Surrogate-model-based analysis of analog circuits—Part ii: Reliability analysis. IEEE Transactions on Device and Materials Reliability, 11(3), 466. https://doi.org/10.1109/TDMR.2011.2160063.

    Article  Google Scholar 

  15. Wu, E. Y., Vayshenker, A., Nowak, E., Sune, J., Vollertsen, R. P., Lai, W., et al. (2002). Experimental evidence of t/sub bd/power-law for voltage dependence of oxide breakdown in ultrathin gate oxides. IEEE Transactions on Electron Devices, 49(12), 2244.

    Article  Google Scholar 

  16. He, M., & Lu, T. M. (2012). Metal-dielectric interfaces in gigascale electronics: Thermal and electrical stability (Vol. 157). Berlin: Springer.

    Google Scholar 

  17. Gonella, R. (2001). Key reliability issues for copper integration in damascene architecture. Microelectronic Engineering, 55(1), 245.

    Article  Google Scholar 

  18. McPherson, J. (2012). Time dependent dielectric breakdown physics-models revisited. Microelectronics Reliability, 52(9), 1753.

    Article  Google Scholar 

  19. Linder, B. P., Lombardo, S., Stathis, J. H., Vayshenker, A., & Frank, D. J. (2002). Voltage dependence of hard breakdown growth and the reliability implication in thin dielectrics. IEEE Electron Device Letters, 23(11), 661.

    Article  Google Scholar 

  20. Degraeve, R., Kaczer, B., De Keersgieter, A., & Groeseneken, G. (2001). Relation between breakdown mode and location in short-channel nmosfets and its impact on reliability specifications. IEEE Transactions on Device and Materials Reliability, 1(3), 163.

    Article  Google Scholar 

  21. Cao, Y. (2006). Predictive technology models. http://www.ptm.asu.edu. Accessed September 3, 2017.

  22. Hicks, J., Bergstrom, D., Hattendorf, M., Jopling, J., Maiz, J., Pae, S., et al. (2008). 45nm transistor reliability. Intel Technology Journal, 12(2), 1–16.

    Google Scholar 

  23. Pae, S., Ashok, A., Choi, J., Ghani, T., He, J., Lee, S. H., et al. (2010). In 2010 IEEE international reliability physics symposium (IRPS) (pp. 287–292). IEEE.

  24. Ramey, S., Ashutosh, A., Auth, C., Clifford, J., Hattendorf, M., Hicks, J., et al. (2013). In 2013 IEEE internationalreliability physics symposium (IRPS) (pp. 4C–5). IEEE.

  25. Novak, S., Parker, C., Becher, D., Liu, M., Agostinelli, M., Chahal, M., et al. (2015). In 2015 IEEE international reliability physics symposium (pp. 2F.2.1–2F.2.5). https://doi.org/10.1109/IRPS.2015.7112692.

  26. Razavi, B. (2012). RF microelectronics (international edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Berke Yelten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saniç, M.T., Yelten, M.B. Time-dependent dielectric breakdown (TDDB) reliability analysis of CMOS analog and radio frequency (RF) circuits. Analog Integr Circ Sig Process 97, 39–47 (2018). https://doi.org/10.1007/s10470-018-1243-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1243-0

Keywords

Navigation