Skip to main content
Log in

A new implementation of the reconfigurable analog baseband low pass filter with cell-based variable transconductance amplifier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, a new implementation of reconfigurable analog baseband (ABB) low pass filter employing cell-based variable transconductance amplifier (cell-based VTA) is presented for multi-standard transceivers. The configurability of the designed filter is supported by activating different cells and changing biasing currents of each cell. Multi-standard transceivers allow to process different protocols in a single chip. These type transceivers need reconfigurable analog elements. In this work reconfigurable ABB low-pass filter is designed to support the application of Bluetooth, CDMA2000, Wideband CDMA, and IEEE 802.11a/b/g/n wireless LANs and 2G/3G/4G. The designed filter operates between 20 kHz and 40 MHz. The minimum value of the designed filter’s third order intersection point is 21.4 dBm. The performance of the designed circuit is tested with TSMC 0.18 µm technology in CADENCE environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Maeda, T., Yano, H., Hori, S., Matsuno, N., Yamase, T., Tokairin, T., et al. (2006). Low-power-consumption direct-conversion CMOS transceiver for multi-standard 5-GHz wireless LAN systems with channel bandwidths of 5–20 MHz. IEEE Journal of Solid-State Circuits, 41(2), 375–383.

    Article  Google Scholar 

  2. Kountouris, A. A., Moy, C., Rambaud, L., & Le Corre, P. (2001). A reconfigurable radio case study: A software based multi-standard transceiver for UMTS, GSM, EDGE and Bluetooth. In Vehicular technology conference, 2001. VTC 2001 Fall. IEEE VTS 54th (vol. 2, pp. 1196–1200). IEEE.

  3. Kitsunezuka, M., Hori, S., & Maeda, T. (2009). A widely-tunable, reconfigurable CMOS analog baseband IC for software-defined radio. IEEE Journal of Solid-State Circuits, 44(9), 2496–2502.

    Article  Google Scholar 

  4. Giannini, V., Craninckx, J., D’Amico, S., & Baschirotto, A. (2007). Flexible baseband analog circuits for software-defined radio front-ends. IEEE Journal of Solid-State Circuits, 42(7), 1501–1512.

    Article  Google Scholar 

  5. Liu, H., Zhu, X., Boon, C. C., & He, X. (2015). Cell-based variable-gain amplifiers with accurate dB-linear characteristic in 0.18 µm CMOS technology. IEEE Journal of Solid-State Circuits, 50(2), 586–596.

    Article  Google Scholar 

  6. Hollman, T., Lindfors, S., Lansirinne, M., Jussila, J., & Halonen, K. A. (2001). A 2.7-V CMOS dual-mode baseband filter for PDC and WCDMA. IEEE Journal of Solid-State Circuits, 36(7), 1148–1153.

    Article  Google Scholar 

  7. De Matteis, M., D’Amico, S., & Baschirotto, A. (2009). A 0.55 V 60 dB-DR fourth-order analog baseband filter. IEEE Journal of Solid-State Circuits, 44(9), 2525–2534.

    Article  Google Scholar 

  8. Kweon, S. J., Shin, S. H., Jo, S. H., & Yoo, H. J. (2014). Reconfigurable high-order moving-average filter using inverter-based variable transconductance amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(12), 942–946.

    Article  Google Scholar 

  9. Lee, J., Han, B., Lim, J. H., Ahn, S. S., Kim, J. K., & Cho, T. (2014). A reconfigurable analog baseband for single-chip, Saw-less, 2G/3G/4G cellular transceivers with carrier aggregation. In Solid-state circuits conference (A-SSCC), 2014 IEEE Asian (pp. 9–12). IEEE.

  10. Bollati, G., Marchese, S., Demicheli, M., & Castello, R. (2001). An eighth-order CMOS low-pass filter with 30–120 MHz tuning range and programmable boost. IEEE Journal of Solid-State Circuits, 36(7), 1056–1066.

    Article  Google Scholar 

  11. Nguyen, T. C., & Venes, A. (2003). Variable transconductance variable gain amplifier utilizing a degenerated differential pair. U.S. Patent No. 6,509,796. Washington, DC: U.S. Patent and Trademark Office.

  12. Pulvirenti, F., & Ilardo, S. (2015). Low drop out voltage regulator with operational transconductance amplifier and related method of generating a regulated voltage. U.S. Patent No. 9,223,329. Washington, DC: U.S. Patent and Trademark Office.

  13. Saunders, J., Shahed R., & Eduardo M. C. (2016). Heterojunction field effect transistor (HFET) variable gain amplifier having variable transconductance. U.S. Patent No. 9,379,228.

  14. Alaybeyoğlu, E., & Kuntman, H. (2017). A new method to design multi-standard analog baseband low-pass filter. In Electrical and Electronics Engineering (ELECO), 2017 10th international conference on (pp. 1216–1220). IEEE.

  15. Lo, T. Y., Hung, C. C., & Ismail, M. (2009). A wide tuning range Gm–C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE Journal of Solid-State Circuits, 44(9), 2515–2524.

    Article  Google Scholar 

  16. Cathelin, A., Fabre, L., Baud, L., & Belot, D. (2002). A multiple-shape channel selection filter for multimode zero-IF receiver using capacitor over active device implementation. In Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings of the 28th European (pp. 651–654). IEEE.

  17. Hori, S., Maeda, T., Matsuno, N., Numata, K., Yoshida, N., Takahashi, Y., & Hikaru, H. (2003). A widely tunable CMOS Gm-C filter with a negative source degeneration resistor transconductor. In Solid-state circuits conference, 2003. ESSCIRC’03. Proceedings of the 29th European (pp. 449–452). IEEE.

  18. Hori, S., Maeda, T., Matsuno, N., & Hida, H. (2004). Low-power widely tunable Gm-C filter with an adaptive DC-blocking, triode-biased MOSFET transconductor. In Solid-state circuits conference, 2004. ESSCIRC 2004. Proceeding of the 30th European (pp. 99–102). IEEE.

  19. Chamla, D., Kaiser, A., Cathelin, A., & Belot, D. (2005). A Gm-C low-pass filter for zero-IF mobile applications with a very wide tuning range. IEEE Journal of Solid-State Circuits, 40(7), 1443–1450.

    Article  Google Scholar 

  20. Alaybeyoğlu, E., & Kuntman, H. (2017). A new current mode implementation of the reconfigurable analog baseband low pass filter with cell-based variable transconductance amplifier. In Electronics, circuits and systems (ICECS), 2017 24th IEEE International Conference on (pp. 148–151). IEEE.

  21. Alaybeyoglu, E. (2017). New possibilities in the design of CMOS frequency agile filters Turkey: Ph.D. thesis, Istanbul Technical University, Institute of Science and Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Alaybeyoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaybeyoğlu, E., Kuntman, H. A new implementation of the reconfigurable analog baseband low pass filter with cell-based variable transconductance amplifier. Analog Integr Circ Sig Process 97, 87–96 (2018). https://doi.org/10.1007/s10470-018-1241-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1241-2

Keywords

Navigation