Skip to main content
Log in

On-chip active filter in GaAs technology for wireless communication systems

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work we present the design of a GaAs monolithic active filter. It is based on a 0.13 μm pHMET technology process provided by HSRI and it has been conceived for RF practical applications, being defined by typical specifications of modern wireless communication systems. The design is based on the use of active inductors in place of spiral inductors, significantly improving the overall performance of the filter. Each active inductor makes use of only one active device slightly affecting the overall power consumption. The filter has been optimised for operating in the bandwidth (1800–2100 MHz) with a 3 dB bandwidth of 30 MHz and a very high slope factor. The 1 dB compression point is − 8 dBm and it is obtained with a DC power consumption of 120 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Campbell, C. F., & Weber, R. J. (1991). Design of a broadband microwave BJT active inductor circuit. In Proceedings of the 34th midwest symposium on circuits and systems (Vol. 1, pp. 407–409).

  2. Thanachayanont, A. (2002). CMOS transistor-only active inductor for IF/RF applications. In Proceedings of the IEEE international conference on industry technology (ICIT’02), Thailand (pp. 1209–1212).

  3. Thanachayanont, A., & Sae Ngow, S. (2002). Class AB VHF CMOS active inductor. In 45th midwest symposium on circuits and systems (MWSCAS) (Vol. 1, pp. 64–67).

  4. Lu, L. H., Hsieh, H. H., & Liao, Y. T. (2006). A wide tuning-range CMOS VCO with a differential tunable active inductor. IEEE Transactions on Microwave Theory and Techniques, 54(9), 3462–3468.

    Article  Google Scholar 

  5. Filanovsky, I. M., Reja, M., & Oliveira, L. B. (2011). New non-gyrator type active inductors with applications. MWSCAS, 1, 1–4.

    Google Scholar 

  6. Kaunisto, R., Alinikula, P., Stadius, K., & Porra, V. (1997). A low-power HBT MMIC filter based on tunable active inductors. IEEE Microwave and Guided Wave Letters, 7(8), 209–211.

    Article  Google Scholar 

  7. Zheng, Y., & Saavedra, C. E. (2008). Ultra-compact MMIC active bandpass filter with wide tuning range. Electronics Letters, 44(6), 424–425.

    Article  Google Scholar 

  8. Chang, Y., Choma Jr, J., & Willis, J. (2000). The design and analysis of a RF CMOS bandpass filter. In ISCAS 2000-IEEE international symposium on circuits and systems, May 28–31, Geneva, Swizerland (Vol. 2, pp. 625–628).

  9. Thanachayanont, A. (2000). A 1.5-V high-Q CMOS active inductor for IF/RF wireless applications. IEEE Conference on Circuits and Systems, 1, 654–657.

    Google Scholar 

  10. Chun-Lee, L., A’ain, A., & Kordesch, A. V. (2009). CMOS active inductor linearity improvement using feed-forward current source technique. IEEE Transactions on Microwave Theory and Techniques, 57(8), 1915–1924.

    Article  Google Scholar 

  11. Yodprasit, U., & Ngarmnil, J. (2000). Q-enhancing technique for RF CMOS active inductor. ISCAS, 5, 589–592.

    Google Scholar 

  12. Stornelli, V., Pantoli, L., Leuzzi, G., & Ferri, G. (2013). Fully differential DDA-based fifth and seventh order Bessel low pass filters and buffers for DCR radio systems. Analog Integrated Circuits and Signal Processing, 75(2), 305–310.

    Article  Google Scholar 

  13. Pantoli, L., Stornelli, V., & Leuzzi, G. (2014). Tunable active filters for RF and microwave application. Journal of Circuits, Systems and Computers, 23(6), 1450088.

    Article  Google Scholar 

  14. Pantoli, L., Stornelli, V., & Leuzzi, G. (2015). Class AB tunable active inductor. Electronics Letters, 51(1), 65–67.

    Article  Google Scholar 

  15. Branchi, P., Pantoli, L., Stornelli, V., & Leuzzi, G. (2014). RF and microwave high-Q floating active inductor design and implementation. International Journal of Circuit Theory and Applications. https://doi.org/10.1002/cta.1991.

    Google Scholar 

  16. Pantoli, L., Stornelli, V., & Leuzzi, G. (2016). Low-noise tunable filter de-sign by means of active components. Electronics Letters, 52(1), 86–88. https://doi.org/10.1049/el.2015.2225.

    Article  Google Scholar 

  17. Pantoli, L., Stornelli, V., & Leuzzi, G. (2016). A low-voltage low-power 0.25 μm integrated single transistor active inductor-based filter. Analog Integrated Circuits and Signal Processing, 87(3), 463–469.

    Article  Google Scholar 

  18. Leuzzi, G., Stornelli, V., Pantoli, L., & Del Re, S. (2015). Single transistor high linearity and wide dynamic range active inductor. International Journal of Circuit Theory and Applications, 43(3), 277–285.

    Article  Google Scholar 

  19. Colucci, P., Leuzzi, G., Pantoli, L., & Stornelli, V. (2012). Third order integrable UHF bandpass filter using active inductors. Microwave And Optical Technology Letters, 54(6), 1426–1429.

    Article  Google Scholar 

  20. Pantoli, L., Stornelli, V., & Leuzzi, G. (2017). GaAs MMIC tunable active filter. In 2017 integrated nonlinear microwave and millimetre-wave circuits workshop (INMMiC), Graz, Austria (pp. 1–3).

  21. Pantoli, L., Barigelli, A., Leuzzi, G., & Vitulli, F. (2016). Analysis and design of a Q/V-band low-noise amplifier in GaAs-based 0.1 µm pHEMT technology. IET Microwaves, Antennas and Propagation, 10(14), 1500–1506.

    Article  Google Scholar 

  22. Mohammadi, L., & Koh, K. J. (2015). 2–4 GHz Q-tunable LC bandpass filter with 172-dBHz peak dynamic range, resilient to + 15-dBm out-of-band blocker. In 2015 IEEE custom integrated circuits conference (CICC), San Jose, CA (pp. 1–4).

  23. Mohammadi, L., & Koh, K. J. (2017). Low power highly linear band-pass/band-stop filter for 2–4 GHz with less than 1% of fractional bandwidth in 0.13 µm CMOS technology. In 2017 IEEE radio frequency integrated circuits symposium (RFIC), Honolulu, HI (pp. 292–295).

  24. Kumar, V., Mehra, R., & Islam, A. (2017). A 2.5 GHz low power, high-q, reliable design of active bandpass filter. IEEE Transactions on Device and Materials Reliability, 17(1), 229–244.

    Article  Google Scholar 

  25. Wu, B., & Chiu, Y. (2015). A 40 nm CMOS derivative-free IF active-RC BPF with programmable bandwidth and center frequency achieving over 30 dBm IIP3. IEEE Journal of Solid-State Circuits, 50(8), 1772–1784.

    Article  Google Scholar 

  26. Wang, S., & Lin, W.-J. (2014). C-band complementary metal-oxide-semiconductor bandpass filter using active capacitance circuit. IET Microwaves, Antennas & Propagation, 8(15), 1416–1422.

    Article  Google Scholar 

  27. Fan, K.-W., Weng, C.-C., Tsai, Z.-M., Wang, H., & Jeng, S.-K. (2005). K-band MMIC active band-pass filters. IEEE Microwave and Wireless Components Letters, 15(1), 19–21.

    Article  Google Scholar 

  28. Chaturvedi, S., Božanić, M., & Sinha, S. (2017). A 50 GHz SiGe BiCMOS active bandpass filter. In 2017 IEEE 20th international symposium on design and diagnostics of electronic circuits and systems (DDECS), Dresden (pp. 2–5).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pantoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantoli, L., Stornelli, V., Leuzzi, G. et al. On-chip active filter in GaAs technology for wireless communication systems. Analog Integr Circ Sig Process 96, 1–7 (2018). https://doi.org/10.1007/s10470-018-1198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1198-1

Keywords

Navigation