Skip to main content

Advertisement

Log in

A 250-μW, 18-nV/rtHz current-feedback chopper instrumentation amplifier in 180-nm cmos for high-performance bio-potential sensing applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low-power, high-performance current-feedback instrumentation amplifier (CFIA) for portable bio-potential sensing applications. Noise analysis is performed to assign an optimized current for the input stage of the amplifier. Analysis on selecting nested chopping frequencies is performed, further reducing 1/f noise and the residual offset. Enhanced power efficiency is achieved by sharing cascode branches and using a Class-AB output stage. Through these methods, a good balance between noise performance and other parameters such as output ripples and power consumption of the ripple reduction feedback loop (RRFL) is achieved. The amplifier is developed using a 1-poly 6-metal 0.18 μm CMOS process. Three gain stages with a gain-boosting input stage provide a low-frequency, open-loop gain >250 dB. When configured to a closed-loop gain of 60 dB, the amplifier achieves a noise voltage density of 18 \({\text{nV}}/\sqrt {{\text{H}}z}\) and a 1/f noise corner of 3 Hz. With a current of 75 μA and a supply voltage of 3.3 V, a CMRR of 110 dB and a PSRR of 120 dB are achieved, with an average input offset of about 6.5 μV. The amplifier achieves a state-of-art noise efficiency factor of 4.2. Practical application of the CFIA is demonstrated with an in vivo electrocardiogram detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ren, Y., Werner, R., Pazzi, N., & Bourkerche, A. (2010). Monitoring patients via a secure and mobile healthcare system. IEEE Wireless Communications, 17(2), 59–65.

    Article  Google Scholar 

  2. Zhang, Y., Sun, L., Song, H., & Cao, X. (2015). Ubiquitous WSN for healthcare: Recent advances and future prospects. IEEE Internet Thing Journal, 1(4), 311–318.

    Article  Google Scholar 

  3. Ng, K. A., & Chan, P. K. (2005). A CMOS analog front-end IC for portable EEG/ECG monitoring applications. IEEE Transactions Circuits and Systems I-Reguar Papers, 52(11), 2335–2347.

    Article  Google Scholar 

  4. Harrison, R. R., & Charles, C. (2003). A low-power low-noise CMOS amplifier for neural recording applications. IEEE Journal of Solid-State Circuits, 38(6), 958–965.

    Article  Google Scholar 

  5. Yeager, D., Zhang, F., Zarrasvand, A., George, N. T., Daniel, T., & Otis, B. P. (2010). A 9 μA, addressable Gen2 sensor tag for biosignal acquisition. IEEE Journal of Solid-State Circuits, 45(10), 2198–2209.

    Article  Google Scholar 

  6. Fan, Q., Sebastiano, F., Huijsing, J. H., & Makinawa, K. A. A. (2011). “A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 60 nm CMOS for wireless sensor nodes, bl. IEEE Journal of Solid-State Circuits, 46(7), 1534–1543.

    Article  Google Scholar 

  7. Wu, R., Huijsing, J. H., & Makinwa, K. A. A. (2013). Precision instrumentation amplifiers and read-out integrated circuits. Verlag: Springer.

    Book  Google Scholar 

  8. Witte, J. F., Huijsing, J. H., & Makinwa, K. A. A. (2008). A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing. IEEE Journal of Solid-State Circuits, 43(12), 2769–2775.

    Article  Google Scholar 

  9. Yazicioglu, R. F., Merken, P., Puers, R., & Hoof, C. V. (2007). A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-State Circuits, 42(5), 1100–1110.

    Article  Google Scholar 

  10. Wu, R., Huijsing, J., & Makinwa, K. A. A. (2011). A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06% untrimmed gain error. IEEE Journal of Solid-State Circuits, 46(12), 2794–2806.

    Article  Google Scholar 

  11. Wu, R., Makinwa, K. A. A., & Huijsing, J. H. (2007). A chopper current feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE Journal of Solid-State Circuits, 44(12), 3232–3243.

    Article  Google Scholar 

  12. van den Dool, B. J., & Huijsing, J. H. (1993). Indirect current feedback instrumentation amplifier with a common-mode input range that includes the negative rail. IEEE Journal of Solid-State Circuits, 28(7), 743–749.

    Article  Google Scholar 

  13. Razavi, B. (2001). Design of analog CMOS integrated circuits (international ed.). New York: Mc Graw Hill.

    Google Scholar 

  14. Hogervorst, R., Tero, J. P., Eschauzier, R. G. H., & Huijsing, J. H. (1994). A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE Journal of Solid-State Circuits, 29(12), 1505–1513.

    Article  Google Scholar 

  15. Vo, D. H.-T., & Lee, J.-W. (2012). Analysis and design of a low power regulator for a fully integrated HF-band passive RFID tag IC. Analog Integrated Circuits and Signal Processing, 71, 69–80.

    Article  Google Scholar 

  16. ADA4528 Precision Op Amp. (2016). http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4528-1_4528-2.pdf. Accessed on 5 February 2016.

  17. Ivanov V & Shaik M. (2016). A 10 MHz-bandwidth 4 μs-large-signal-settling 6.5 nV/√Hz-noise 2 μV-offset chopper operational amplifier. In IEEE ISSCC Digest of Technical Papers (pp. 88–90).

  18. Lee, J.-W., Phan, N. D., Vo, D. H. T., & Duong, V.-H. (2014). A fully integrated EPC Gen-2 UHF-band passive tag IC using an efficient power management technique. IEEE Transactions on Industrial Electronics, 61(6), 2922–2931.

    Article  Google Scholar 

  19. Xu, J., Fan, Q., Huijsing, J. H., Hoof, C. V., Yazicioglu, R. F., & Makinwa, K. A. A. (2013). Measurement and analysis of current noise in chopper amplifiers. IEEE Journal of Solid-State Circuits, 48(7), 1575–1584.

    Article  Google Scholar 

  20. Witte, J. F., Makinwa, K. A. A., & Huijsing, J. H. (2009). Dynamic offset compensated CMOS amplifiers. Verlag: Springer.

    Book  Google Scholar 

  21. Winter, B. B., & Webster, J. G. (1983). Driven-right-leg circuit design. IEEE Transactions on Biomedical Engineering, 30(1), 62–66.

    Article  Google Scholar 

  22. Spinelli, E. M., & Mayosky, M. A. (2005). Two-electrode biopotential measurements: power line interference analysis. IEEE Transactions on Biomedical Engineering, 52(8), 1436–1442.

    Article  Google Scholar 

  23. Yazicioglu, R. F., Kim, S. Y., Torfs, T., Kim, H. J., & Hoof, C. V. (2011). A 30 μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE Journal of Solid-State Circuits, 46(1), 209–223.

    Article  Google Scholar 

  24. R. F. Yazicioglu et al. (2008) A 200 μW eight-channel acquisition ASIC for ambulatory EEG systems. In IEEE ISSCC Digest Technical Papers (pp. 164-167).

  25. T. Denison et al. (2007) A 2.2 μW 94 nV/Hz chopper-stabilized instrumentation amplifier for EEG detection in chronic implants. IEEE ISSCC Digest Technical Papers. (pp. 162–163).

  26. Xu, J., Busze, B., Hoof, C. V., Makinwa, K. A. A., & Yazicioglu, R. F. (2015). A 15-channel digital active electrode system for multi-parameter biopotential measurement. IEEE Journal of Solid-State Circuits, 50(9), 2090–2100.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a National Research Foundation (NRF) grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037656) and in part by the Basic Science Research Program through the NRF of Korea (No. 2015R1A2A2A03004160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HS., Nguyen, V.N., Pham, X.L. et al. A 250-μW, 18-nV/rtHz current-feedback chopper instrumentation amplifier in 180-nm cmos for high-performance bio-potential sensing applications. Analog Integr Circ Sig Process 90, 137–148 (2017). https://doi.org/10.1007/s10470-016-0853-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0853-7

Keywords

Navigation